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Abstract: Mathematical decision support for operative planning in water supply systems is highly desirable; it leads, 

however, to very difficult optimization problems. We propose a nonlinear programming approach that yields practically 

satisfactory operating schedules in acceptable computing time even for large networks. Based on a carefully designed 

model supporting gradient-based optimization algorithms, this approach employs a special initialization strategy for 

convergence acceleration, special minimum up and down time constraints together with pump aggregation to handle 

switching decisions, and several network reduction techniques for further speed-up. Results for selected application 

scenarios at Berliner Wasserbetriebe demonstrate the success of the approach.  
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INTRODUCTION  

 Stringent requirements on cost effectiveness and 
environmental compatibility generate an increased demand 
for model-based decision support tools for designing and 
operating municipal water supply systems. This paper deals 
with the minimum cost operation of drinking water 
networks. Operative planning in water networks is difficult: 
a sound mathematical model leads to nonlinear mixed-
integer optimization, which is currently impractical for large 
water supply networks as in Berlin. Because of the enormous 
complexity of the task, early mathematical approaches 
typically rely on substantially simplified network hydraulics 
(by dropping all nonlinearities or addressing the static case, 
for instance) [1-8], which is often unacceptable in practice. 
Other authors employ discrete dynamic programming [9-14], 
which is mathematically sound but only applicable to small 
networks unless specific properties can be exploited to 
increase efficiency. Optimization methods based on 
nonlinear models (mostly for the pumps only) are reported in 
[15-19]. These approaches employ computationally 
expensive meta-heuristics or suffer from inefficient coupling 
of gradient-based optimization with non-smooth simulation 
by existing network hydraulics software, such as EPANET 

[20]. Other topics in water management include network 
design [21-24], online control [25, 26], state estimation [27], 
and contamination detection [28]. More loosely related 
recent work addresses modeling and optimization for 
networks of irrigation and sewage canals or for gas 
networks, see, e.g., [29-35]. Previous efforts toward mini-
mum cost operation at Berliner Wasserbetriebe include:  
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• experiments with various optimization models and 
methods [36, 37],  

• a first nonlinear programming (NLP) model 
developed under GAMS [38],  

• numerical results for a substantially reduced 
network graph using (under GAMS) the SQP codes 
CONOPT, SNOPT, and the augmented Lagrangian 
code MINOS.  

 The main goal of the joint work reported here is the 
development of a decision support tool suitable for routine 
application, to be implemented as an optimization module 
within the new operational control system of Berliner 
Wasserbetriebe. The approach is restricted to the framework 
sketched above: a pure NLP model (no integer variables), the 
GAMS modeling environment, and the listed NLP solvers. 
Criteria for applicability are speed (response time), 
reliability, and practicability. Our mathematical 
developments toward these goals are based on two internal 
studies [39, 40] and can be coarsely categorized into 
modeling techniques (reported in [41]) and nonlinear 
programming techniques (reported here). Basic modeling 
techniques include, in particular, a globally smooth and 
asymptotically correct approximation of the hydraulic 
pressure loss in pipes, and suitably aggregated models for 
collections of pumps that operate in parallel. The NLP 
techniques include, among others, a sequential linear 
programming type initialization procedure for the nonlinear 
iteration, special constraints that ensure minimum up and 
down times in pump operation, and various network 
reduction techniques. Together with pump aggregation, the 
up and down time constraints permit the handling of discrete 
decisions (pump switching) without introducing binary 
variables. Following the NLP-based network-wide 
optimization, nonlinear mixed-integer models are solved 
locally at each waterworks.  
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 We start by summarizing the component models of all 
the network elements in Section 1, followed by the overall 
NLP model. In Section 2, the smoothing and SLP 
initialization are discussed along with further convergence 
enhancement techniques. Section 3 is devoted to 
combinatorial issues, particularly the prevention of undesired 
pump switching. Several network reduction strategies are 
then developed in Section 4 with special emphasis on 
suitable smoothing of the hydraulic friction loss. Finally, 
Section 5 presents selected application scenarios at Berliner 
Wasserbetriebe in order to demonstrate the success of our 
approach.  

1. OPTIMIZATION MODEL  

 We will first summarize the nonlinear programming 
model developed in [41] in order to keep the paper self-
contained. This model covers the physical and technical 
network behavior. Later on we will add further constraints 
and develop graph reduction techniques to achieve a desired 
solution behavior and to enable efficient treatment by the 
selected standard NLP solvers. The basic notation used in 
our model is given in Table 1.  

1.1. Network Topology 

 The network model is based on a directed graph G = (N, 
A) whose node set represents junctions, reservoirs, and 
tanks, and whose arc set represents pipes, pumps, and gate 
valves, 

N = Njc    Nrs Ntk,  

A = Api    Apu    Avl.  

 The set of pumps consists of raw water pumps and pure 
water pumps, Apu = Apr App. We denote arcs as a A or, 
with tail and head i, j  N, as ij A. A flow from i to j is 
positive, from j to i negative.  

 Fig. (1) illustrates the main network of Berliner 
Wasserbetriebe, with 1481 nodes and 1935 arcs. Earlier 
investigations were based on a small test configuration with 
144 nodes and 192 arcs; cf. [41].  

1.2. Optimization Horizon and Dynamic Variables 

 We consider a planning period of length T in discrete 
time, t = 1, 2,…,T, with initial conditions at t = 0. The 
subinterval (t  1, t) will be referred to as period t and has 
the physical length t. At Berliner Wasserbetriebe, the 
planning period represents the following day in 24 hourly 
intervals.  

 We measure the pressure by the head H: the sum of the 
geodetic elevation and of the elevation gain corresponding to 
the hydraulic pressure. Pressure variables Hjt are associated 
with every node j N and time period t. Volumetric flow 
rates Qat are associated with every arc a A. Control 
variables are the pressure increase across pumps and 
decrease across valves, Hat, a Apu Avl. All variables 
have simple bounds.  

1.3. Network Dynamics and Model Constraints 

 The network hydraulics include over-all flow balances 
and pressure relations, with one equation per network 
element:  
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 Externally given data include the predicted junction 
demands Djt, constant reservoir heads 

 
H

j
,  tank inflow  

 

Table 1.  Notation 

Symbol Explanation Value Unit 

Q Volumetric flow rate in arcs  m3/s 

D Demand flow rate at junctions  m3/s 

H Pressure potential at nodes (head)  m 

H Pressure increase at pumps, decrease at valves  m 

L Pipe length  m 

d Pipe diameter (bore)  m 

k Pipe roughness  m 

A Pipe cross-sectional area  m2 

 Pipe friction coefficient  – 

r Pipe hydraulic loss coefficient  s2/m5 

 Water density 1000 kg/m3 

g Gravity constant 9. 81 m/s2
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characteristics Ejt(Hj,t 1, Hjt), and pipe pressure loss 
characteristics Ha(Qat). The sign condition (5) ensures 
consistency of the valve pressure decrease with the unknown 
direction of flow.  

 The hydraulic pressure loss in pipes is usually expressed 
in terms of a loss coefficient ra(Qat) depending on the pipe 
length and diameter,  

Ha(Qat) = ra(Qat)Qat|Qat|,   ra(Qat) =
8La
2gda

5 a(Qat), (6) 

where the friction coefficient a(Qat) depends on the flow 
rate and the pipe roughness ka. A highly accurate model for 

a is based on the laws of Hagen–Poiseuille (laminar flow) 
and Prandtl–Colebrook (turbulent flow); we call this the HP-
PC model. A much simpler and flow-independent formula is 
the law of Prandtl–Kármán for rough pipes (PKr model), 

  
a

PKr
= 2log

k
a

/ d
a

3.71

2

, r
a

PKr
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8L
a

2gd
a

5 a

PKr ,  (7) 

which provides a valid approximation for highly turbulent 

flow, that is, large Qat. An important element of our approach 

is a globally smooth, asymptotically correct approximation 

  
H

a

PKr  
that shares the leading coefficient with the 

  
r
a

PKr
 model. 

We call it the smoothed PKr model (PKrs model); for more 

details see [41] and Section 2. 1.  

 Nontrivial inequalities include bounds on: the flow 
gradients at the raw water pumps, the daily discharge of the 
waterworks outlets, a Apo, and the total power consumption 
of raw water and pure water pumps a Apr(w) App(w) at 
each waterworks or pumping station, w W: 
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Table 2.  Notation for the Cost Function 

Symbol Explanation Unit 

K Total daily operating cost  

  
k

at

el
 

Price for electric energy at pump a during period t /J 

  
k

a

raw
 

Specific price for raw water and treatment materials 

at pump a 
/m

3
 

   
w

at

raw
 

Specific work for raw water pumping and treatment 

at pump a 

J/m3
 

 

 

 
Fig. (1). Main distribution network of Berliner Wasserbetriebe. 
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 Here a(Qat) is a smooth approximation of the efficiency 
of pure water pumps (actually small groups of them), see 
[41, §2.8] and Fig. (2).  

 Relevant initial values are Hj0, j Ntk, and Qa0, a Apr, 
entering into constraints (2) and (8), respectively. The 
remaining initial pump flows Qa0, a App, will be required 
for the minimum up and down time constraints of Section 
3.2. Undesired finite horizon effects are prevented by 
tightened lower bounds 

 
H

jT
j  Ntk (“terminal constranints”). 

1.4. Objective Function 

 The overall goal is to minimize the variable operating 
costs,  
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 If we use the cost coefficients in Table 2 and let 
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1.5. NLP Formulation 

 The decision vector of time step t consists of node 
pressures Hjt, arc flows Qat, and pressure differences Hat  

across pumps and valves,  
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yielding the NLP decision vector  

x = (x1, . . . , xT) R
N 

,   N = nT. 

 We do not make a distinction between state and control 
variables here, and fixed initial values x0 are not included in 
x.  

 The equality constraints in each time step comprise one 
equation per network element (node or arc),  
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 The number of variables and constraints per time step can 
be reduced by |Nrs| if the constant reservoir pressures are 
treated as parameters. In any case, there are |Apu  Avl|  
degrees of freedom per time step corresponding to the 
number of controlled network elements.  

 The inequality constraints are comprised of upper and 
lower range constraints and simple bounds on all variables,  

cR(x) [c ,c
+
],   x  [x ,x

+
], 

with range constraints  
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 The components of cR
 

in each time step include the 

nontrivial inequalities from the pumps and valves,  
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 Note that the daily discharge limit in waterworks outlets 
depends on all decision vectors xt and that the tank flow 
balances and the gradient constraints in the raw water pumps 
depend on the current and previous decision vectors xt, xt 1; 

 

Fig. (2). Efficiency of aggregated pure water pumps under optimal configuration. 
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all other constraints only depend on the current decision 
vector xt.  

 Finally, the separable objective can be written as  
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 Thus we obtain a highly structured NLP model in 
standard form:  

 
Minimize

x

f(x) subject to cE(x) = 0, cJ(x)  0, 

where  

   

cJ (x) =

cR (x) c

c+ cR (x)

x x

x
+

x

.  

2. CONVERGENCE ACCELERATION  

 One of the primary goals in developing the optimization 
approach presented here is to achieve acceptable response 
times for daily planning. Since we are restricted to work with 
general purpose NLP solvers available under GAMS, 
exploiting the characteristic NLP structure by developing 
special algorithms is not an option. We have to rely on 
convergence enhancement and other techniques. A suitable 
model formulation and a special initialization strategy for the 
iterative solution have turned out to be the most effective 
measures for convergence acceleration.  

2.1. Model Smoothness 

 The objective and constraints in our model are all twice 
continuously differentiable (C

2
), except for the pipe friction 

loss H(Q) = r(Q)Q|Q|. In the piecewise quadratic PKr 
model H

PKr
, the second order derivative has respective 

constant values 2r
PKr 

and +2r
PKr 

for Q < 0and Q > 0, 
producing a jump discontinuity at Q = 0. Thus H

PKr 
is C

1 

only. The more accurate HP-PC model H
HP-PC 

is not even 

continuous at the transition from laminar to turbulent flow [41].  

 The available solvers use derivatives up to first order 
(MINOS) or second order (CONOPT and SNOPT); numerical 
difficulties must therefore be expected on a C

1 
(or even less 

smooth) model whenever the flow variables traverse 

discontinuities between subsequent NLP iterations. This will 

typically happen during the initial phase of the iterative solution 

(i. e., far from the optimum, where large steps are taken), whereas 

it is less likely during the final phase of local convergence.  

 In order to avoid such numerical difficulties, we 
recommend the following smoothed PKr model as a global 
approximation of the pipe friction loss,  

  

H
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 The parameters aa > 0 and da > 0 can be selected to 
match a desired slope at Q = 0 and to balance the relative 
contributions of the two square root terms, whereas ba > 0 
and ca < 0 depend on the pipe dimensions. They are 
determined in such a way that, asymptotically for |Q|  , 

the law of Prandtl–Colebrook is approximated up to second 

order [41],  
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 If accuracy requirements are moderate, the PKrs model 
can be simplified by setting ca = 0 or even ba = ca = 0. This 
may be appropriate, for instance, for saving computational 
effort during early NLP iterations. 

 The numerical effect of the smoothing heavily depends 
on other circumstances. Computational experiments show 
that, on the test configuration, the smoothing yields 
significant convergence improvements for CONOPT and 
SNOPT (the SQP methods) with default initialization 
heuristics, whereas MINOS (the augmented Lagrangian 
method) is hardly affected at all. Moreover, SNOPT is 
slightly faster than MINOS on average. Interestingly, the 
advantage of the C

2 
PKrs model over the C

1 
PKr model 

disappears when we introduce the SLP-based initialization 
scheme of Section 2.2; now MINOS performs equally well on 
both formulations, and always better than SNOPT. Another 
change in the picture occurs when we switch to the much 
larger main network model. Here the smoothing is beneficial 
for both solvers, with MINOS still outperforming SNOPT on 
average. (Apparently, due to rapid convergence within about 
20 major iterations, the BFGS updates in SNOPT cannot 
build up sufficient curvature information to give an 
advantage). In practice, we therefore use MINOS on the C

2 

model.  

2.2. Initial Estimates 

 Computational experiments with artificially perturbed 
optimal solutions (we added 10% white noise) confirm the 
expectation that rapid convergence can be achieved when the 
initial iterate is close to a solution. We have devised an 
automatic initialization scheme based on LP approximations 
of the NLP model in order to exploit this fact. Such 
approximations are rather crude but quickly solvable with 
standard LP software (we use CPLEX), so that physically 
meaningful initial estimates are generated with little effort. If 
the LP approximation is repeated several times, it yields an 
initialization scheme of SLP type (sequential linear 
programming).  

 The basic idea of SLP approaches in the literature (cf. 
[42-44]) is to replace the expensive QP in SQP methods 
(sequential quadratic programming) by a simpler LP 
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subproblem, which results in an estimate of the active set at 
little cost even for very large problems:  
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 The trust region constraint is introduced here to ensure 

global convergence and to prevent unboundedness, and the 

LP data are generated as a standard linearization of the 
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 The LP solution s
k 

serves to determine a working set of 

currently active constraints, based on which a better second 

order step is usually calculated. Only if this fails, s
k 

is taken as 

the step direction for the SLP.  

 The LP (12)–(15) may be infeasible even if the NLP is 
feasible; it is therefore appropriate to minimize the 1 penalty 
function instead, subject only to the trust region constraint,  
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 For the numerical solution, the nonsmooth 1 problem is 
finally converted to the LP form by standard techniques (see, 
e.g., [45]), yielding the problem  
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 The nonnegative slack variables 
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E
,s

J
 represent 

positive and negative violations of equality and inequality 

constraints, respectively, and e denotes the vector of ones in 

appropriate dimensions. We can easily see that the modified 

LP (17)–(20) is always feasible. Moreover, if the penalty 

parameter  is sufficiently large, the slacks of an optimal 

solution vanish if and only if the original LP is feasible, in 

which case both problems yield the same optimal value for 

the step s.  

 Our problem-specific scheme differs from the general 
approach in several respects:  

2.2.1. Linearization 

 Observe first that nonlinearities only arise in the pressure 

loss equations 
  
c

at

loss
, in the valve constraints

  
c
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sign ,  and in the 

objective. These nonlinearities are handled as follows.  

(1)  The PKr friction model is used, and the absolute 

volumetric flow rates |Qat| are replaced by constant 

parameters 
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at  > 0. The pressure loss (6) then reads  
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 For the parameter 
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at  we use a heuristic initial 

estimate defined as a constant multiple of the pipe 

diameter, 
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may be available from optimal solutions of the past). 

In iteration k, the flow components 
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 of the LP 

solution are then used to update the parameter values,  
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at
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= Q

at
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+ (1 ) | Q
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where we choose  = 0.6 as weighting factor in the 
convex combination.  

(2) If we temporarily assume that the direction of flow is 
known in all valves, the sign condition is replaced by 
two simple bounds,  

Qat   0, Hat    0 or Qat   0, Hat   0. 

 The dual LP solution then yields directional 
information for the next LP iteration: if any of the 
simplified constraints are binding, the sign of both 
constraints can be switched on the assumption that the 
chosen direction of flow was not optimal.  

(3) The nonlinear term HatQat/ (Qat) in the pump 

efficiency model entering the cost function is handled 

as follows: the pressure difference Hat is replaced by 

a constant parameter that is iteratively updated like 

  
Q

at
. The quotient Qat/ (Qat) is approximated by a 

strictly increasing convex piecewise linear function of 

Qat that consists of three segments and starts at the 

origin.  

 Our LP is a local approximation of the NLP yielding 
the iterate x

k
, rather than a local linearization yielding 

a step direction s
k 

at the given iterate. Moreover, we do 

not use any second order information.  

2.2.2. Trust Region 

 We do not impose a trust region constraint in addition to 
the bounds on all variables, since we are not interested in 
global or local convergence properties of the SLP method; 
we only want to get a cheap initial estimate for the NLP 
iteration instead. In practical computations we usually 
perform three SLP-type steps before switching to the fully 
nonlinear model. According to our experience (based on a 
large number of numerical experiments), this yields the best 
performance for the network of Berliner Wasserbetriebe.  

2.2.3. Penalty 

 The 1 penalty approach ensuring feasibility is only 
applied to selected constraints, namely to the pressure limits 
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at pressure measurement points and at the outlets of 
waterworks and pumping stations. These constraints are 
relaxed in the LP as well as in the NLP model.  

 A relaxation of all inequality constraints is applied in a 
second version of our operative planning model. This 
version is used after physical modifications of the network, 
in order to detect potential infeasibilities caused by errors in 
the mathematical formulation or input data.  

2.2.4. Remarks 

 A pure SLP approach has also been tested. The 
performance was generally inferior to the combined LP/NLP 
approach; often the iteration did not even converge.  

 Finally, we tried to catch the combinatorial aspects of the 
problem explicitly during the SLP initialization procedure by 
replacing the LP approximations by similar mixed-integer 
linear programs (MIP). Even with SOS Type 2 formulations 
of the piecewise linear approximation of the pressure loss 
equations (cf. [46-48]), the solution of the MIP subproblems 
took so long that no benefit could be achieved.  

3. COMBINATORIAL ISSUES  

 Combinatorial aspects addressed here include the 
direction of the flow across valves and the switching of 
speed-controlled pumps. Further aspects that may occur in 
water networks include the switching of fixed-speed pumps 
[41] and the choice among alternative waterworks outlets. 
The latter involve purely integral decisions that cannot be 
treated satisfactorily in an NLP setting to date, although 
nonlinear programs with certain combinatorial structures 
(complementarity constraints and equilibrium constraints) 
have recently been studied and successfully solved by 
suitably extended NLP methods [49-53].  

3.1. Flow Direction across Valves 

 The valve sign condition (5) has some undesirable 
properties at the origin, where the gradient vanishes and no 
constraint qualification holds. This reflects the geometry of 
the feasible set: consisting of two opposite closed quadrants, 
it has a disconnected interior and becomes itself 
disconnected if the origin is removed. One might think that 
the direction of the flow should therefore be introduced as a 
binary decision variable; however, a detailed analysis reveals 
that no numerical difficulties are to be expected as long as 
the gradient of the Lagrangian (projected into the relevant 
subspace) does not vanish at the origin. The latter condition 
is satisfied generically; there is therefore no need to 
reformulate the model.  

3.2. Pump Switching 

 Computational experience shows that optimal solutions 
frequently exhibit undesirable pump switching at the 
waterworks outlets:  

• short-term activation of a pump for just one or two 
periods;  

• short-term deactivation of a pump for just one or 
two periods;  

• alternating discharge: a certain flow rate is 
produced by two or more waterworks outlets 
alternating in time.  

 Operating schedules like these reduce the pump lifetime 
and require increased activity of the operators.  

 The specification of minimum up and down times is 
straightforward in a mixed-integer model. Let Yat {0, 1} 
designate the activity status of pump a App; cf. [41]. Then 
the following linear inequality constraints, specified at t = 
0,…,T K, freeze the status for at least K periods after a 
switch:  

K(Ya, t+1  Yat)  Ya, t+1 + ··· + Ya, t+K   2K(Ya, t+1  Yat) + K. 

 In a pure NLP setting it is unclear how to obtain a similar 
effect. Several mathematical and heuristic techniques have 
therefore been devised and tested in order to avoid 
unnecessary pump switching. These can be categorized into 
three major groups:  

(1)  penalty approach;  

(2)  linear, piecewise linear, and nonlinear constraints (C
0 

or C
2
);  

(3)  heuristics.  

 In summary, most of the techniques either proved little 
successful or rather slow. However, we did find 
computationally cheap smooth constraints (group 2) that 
suppressed the undesired behavior, either with certainty 
(pump activation) or with high reliability (deactivation).  

3.2.1. Avoiding Short-Term Pump Activation 

 As it turns out, activation of pumps for one or two 
periods can be prevented with certainty by suitable linear 
inter-temporal constraints. Formally, we wish to inhibit flow 
sequences of the types  

(1)  (Qt, Qt+1, Qt+2) = (0, Qt+1, 0) with Qt+1 > 0, or  

(2)  (Qt, Qt+1, Qt+2, Qt+3) = (0, Qt+1, Qt+2, 0) with Qt+1, Qt+2 > 0.  

 The basic idea is to prevent excessive concavity of the 
piecewise constant flow rate profiles (1) and (2) by placing 
appropriate lower bounds on their discrete curvatures. In 
case (1), such a condition may be formulated as  

Qt  2Qt+1 + Qt+2    c1(Qt + Qt+1 + Qt+2),  t = 0,…, T  2, (21) 

where c1 > 0 is a constant parameter. The flow-dependent 
right-hand side allows for larger values of the concavity with 
increasing total flow. A suitable range for the value of the 
parameter c1 is determined as follows. In the case of interest, 
Qt = Qt+2 = 0, condition (21) yields  

2Qt+1    c1Qt+1, 

so that one must choose c1 < 2 to force Qt+1 to zero, as 
desired. On the other hand, we do not wish to rule out 
otherwise feasible pump operation: if c1 is chosen 
unreasonably small, then condition (21) will become too 
restrictive. This can immediately be seen in the equivalent 
form  

 

Q
t+1

1+ c
1

2 c
1

(Q
t
+Q

t+2
),  (22) 
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which implies, for instance, Qt+1  
 

1

2
(Qt + Qt+2) if c1 = 0, and 

Qt+1 = 0 for all t if c1   1. In order to find a lower bound on 

c1, we rewrite (21) as  

(1 + c1)(Qt  + Qt+2)  (2  c1)Qt+1   0 

and determine the minimum of the left-hand expression over 
the nontrivial feasible flow sequences,  

{Qt, Qt+1, Qt+2 {0} [Q , Q
+
]: Qt  0 or Qt+2  0}.  

This yields  

(1 + c1)Q
 

(2  c1)Q
+   

  0, 

which is realized by the extremal flow sequences  

(0, Q
+
, Q ) and (Q , Q

+
, 0). 

 Letting  

 

=
Q

+

Q
>1 and

1
=

2 1

+1

1

2
,2 ,  

the minimal left-hand expression above is finally seen to be 
nonnegative if and only if  

c1 [ 1, 2) where [ 1, 2)  
 
0 . 

 Similar reasoning for the two-period case (2) yields the 
restriction  

Qt  Qt+1  Qt+2 + Qt+3   c2(Qt + Qt+1 + Qt+2 + Qt+3),  
t = 0,…, T 3. 

 One must require c2 < 1 here in order to prevent 
undesired pump activation, and a lower bound 2 is obtained 
by the reformulation  

(1+ c2)(Qt + Qt+3)  (1  c2)(Qt+1 + Qt+2)  0. 

 Minimizing the left-hand expression yields extremal flow 
sequences  

(0, Q
+
, Q

+
, Q ) and (Q , Q

+
, Q

+
, 0), 

and the condition  

(1+ c2)Q
 

 (1  c2)(2Q
+
)  0. 

 Thus we finally get  

 

c
2

[
2
,1) where

2
=

2 1

2 +1

1

3
,1 , and [

2
,1) 0.  

 In summary, the following linear inequalities prevent 
undesired pump activation for one or two periods with 
certainty without being too restrictive:  

(c1 + 1)Qt + (c1  2)Qt+1 + (c1 + 1)Qt+2  0, c1 

 

1

2
,2 ,   

(c2 + 1)Qt + (c2  1)Qt+1 + (c2  1)Qt+2 + (c2 + 1)Qt+3  0,  

c2 

 

1

3
,2 .   

 These restrictions are specified for each pump in almost 
all time steps, yielding the large number of O(|Apu|T) extra 
conditions. Despite this, no adverse effect on the 
computation time was observed on our problem instances.  

3.2.2. Avoiding Short-Term Deactivation of Pumps 

 Linear restrictions in the spirit of (21) are unfortunately 
not useful if we want to avoid short-term deactivation: 

assume that (Qt, 0, 0) and (0, 0, Qt+2) are feasible and all 
feasible sequences satisfy the constraint  

aQt + bQt+1 + cQt+2 + d  0. 

 Although the sequence (Qt, 0, Qt+2) is forbidden, it 
satisfies the same constraint. The asymmetry arises from the 
fact that during activation the initial and final flow rates are 
both exactly known and identical, Qt = Qt+2 = 0, whereas 
only Qt+1 = 0 is known during deactivation. In general, Qt 

and Qt+2 are neither known nor identical in the latter case.  

 In order to inhibit short-term deactivation, we suggest to 
specify a certain fraction of the minimum of the enclosing 
values as lower bound on the intermediate flow rate; we 
arrive at the piecewise linear constraint  

Qt+1   c min(Qt, Qt+2),   t = 0,…, T  2, 

with an appropriate parameter range of c (0, 1]. Although 
doing the job, this formulation slows down convergence 
dramatically, which is not surprising since the minimum 
function is not differentiable but only continuous (C

0
). Using 

the standard reformulation in terms of the absolute value 

function,  

 
Q

t+1

c

2
(Q

t
+Q

t+2
| Q

t
Q

t+2
|),  

one can now apply the smoothing |x|= 
 

  x
2

   x
2
+

2  
to 

obtain the C
2 

formulation  

 
Q

t+1

c

2
Q

t
+Q

t+2
(Q

t
Q

t+2
)2
+

2( ).  

 We finally redefine c in order to arrive at the nonlinear 
inequality  

 

Q
t+1

c Q
t
+Q

t+2
(Q

1
Q

t+2
)2
+

2( ) 0, c 0,
1

2
.  (23) 

 The two-period version consists of two similar 
inequalities with identical parameters,  

Qt+i   c min(Qt, Qt+3),       i =  1,2,       t = 0,…, T 3, 

yielding the smooth reformulation  

  

Q
t+i

c Q
t
+Q

t+3
(Q

1
Q

t+3
)2
+

2( ) 0, c 0,
1

2
, i = 1,2.  (24) 

 Note that the constraints (23), (24) are always compatible 
with the flow bounds and flow gradient bounds.  

4. MODEL REDUCTION  

 Due to excessive computation times with the main 
network (even in the case of rapid convergence), the need for 
a systematic size reduction of the network graph arose. Such 
a reduction is performed by preprocessing before the 
optimization; it is based solely on static network data, so that 
a single reduced graph is used over the entire horizon.  

 The reduction leads to simplified models for the pipe 
friction loss, where we calculate the leading coefficient from 
the PKr model to ensure asymptotically correct friction loss 
for large flow values |Q|. Appropriate smoothing is then 
introduced for small flow values.  
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Fig. (3). Collapsing parallel pipes. 

4.1. Parallel Pipes 

 It is not uncommon for municipal water networks to 
contain pairs of nodes that are connected by several 
“parallel” pipes. In the network model, such pipe ensembles 
can be replaced by a single pipe (see Fig. 3), which is 
hydraulically equivalent if the loss coefficients r  are flow-
independent (PKr model). Consider a collection of n parallel 
pipes with total flow rate  

Q= Q1 + ··· + Qn. (25) 

 All the flows Q and Q  have the same direction and a 
common pressure difference,  

H = rQ|Q| = r Q |Q |,      = 1,…,n. (26) 

 The fictitious loss coefficient r of the hydraulically 
equivalent pipe is readily calculated from (25) and (26). 
Assuming positive flows with no loss of generality, one 
obtains  

 

H

r
= Q = Q

v
=

v=1

n H

r
vv=1

n

,  

and hence 

 

1

r

=
1

r
v

r =

v=1

n
H

r
vv=1

n

2

.  

 Conversely, with (26) the individual flows Q  are 
recovered from the total flow as  

 

Q
v
=

r

r
v

Q.  

 This is similar to parallel resistors in an electric circuit, 
except that the flow dependence here is quadratic rather than 
linear.  

 For a derivation of the parameters of the smooth 
approximation (2.1), the replacement pipe also needs 
fictitious geometric dimensions. We define the length as the 
average length of the original pipes, and the diameter such 
that the total pipe volumes agree,  

  

L =
1

n
L

v
, d =

l

L
L

v
d

v

2

v=1

n

v=1

n

.  

 The roughness is finally chosen in such a way that r is 
consistent with all dimensions according to (6) and (7),  

 

r =
8L
2gd5

2 log
k / d

3.71

2

 

yielding 

 
k = 3.71d 10p , p = 2L / ( 2gd5r)  

From these values we readily obtain the required parameters 
b, c for the PKrs model.  

4.2. Pipe Sequences 

 A sequence of n pipes traversing junction nodes 0,…, n 
can be collapsed if no other arcs are connected to the interior 
nodes 1,…, n  1. In this case the interior nodes are 
eliminated, their demands D  are distributed over the two 
boundary nodes, and the n pipes are replaced by a fictitious 
single pipe; (see Fig. (4)).  

 

Fig. (4). Collapsing pipe sequences. 

4.2.1. Zero Interior Demands 

 In the case of vanishing demands, pipes 1,…, n have 
identical flow rates, Q  = Q, and a hydraulically equivalent 
model is obtained if and only if the loss coefficient r of the 
fictitious pipe is defined as the sum of the individual loss 
coefficients,  

 

H
0

H
n
= H

v 1
H

v
= r

v
Q

v
| Q

v
|=

v=1

n

v=1

n

r
v
Q | Q |

v=1

n

= r Q | Q | .  

 This is similar to serial resistors in an electric circuit, and 
it does not matter whether the coefficients r  are assumed to 
be flow-independent or not.  

4.2.2. Nonzero Interior Demands 

 For arbitrary consumption demands it is impossible to 
construct a hydraulically equivalent reduced model. There 
are three reasons:  

(1)  the symmetry with respect to the direction of the flow 
is broken in general: inflows of identical magnitudes 
at nodes 0 and n yield different absolute pressure 
differences;  

(2)  the inflow may enter from both sides, adding up to 
the total interior demand;  

(3) the pressure difference does not depend quadratically 
on any linear combination of the flow rates Q , even 
with quadratic segment losses r Q |Q | (PKr model).  

 As it turns out, the best fictitious replacement pipe in this 

case is obtained as follows. With the notation rk:l := 
 

r
v
,

v=k

l

 

let r = r1:n (as above), let L = L1:n, and split each interior 

demand D  into fictitious demands (r +1:n/r)D  at node 0 and 

(r1: /r)D  at node n, according to the relation of friction losses 

to each endpoint:  

 

D
0

int
:=

r
v+1:n

rv=1

n 1

D
v
, D

n

int
:=

r
1:v

rv=1

n 1

D
v
.  (27) 

 The actual inflow from node 0 and outflow to node n, Q1 

and Qn, are thus replaced with a common fictitious flow 

value, Q1   
 
D

0

int
 =  Qn  + 

 
D

n

int
.   

 As with parallel pipes (see Section 4.1), the diameter d 

and roughness k of the fictitious pipe are determined such 

that its loss coefficient r is consistent with the PKr model.  
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 We will now see that one can do better than with such a 

single pipe replacement model. Consider the exact pressure 

loss in the pipe sequence according to the quadratic PKr 

model. Since the flow rates in successive pipes are related by  

Q +1 = Q   D ,    = 1,…, n  1, 

we inductively get  

Q  = Q1  
 
D

v
,    = 1,…, n, 

where Q1 is the inflow from node 0 and 
 
D

v
 denotes the 

cumulative interior demand up to and including node   1,  

 
D

v
 = D1: 1,   = 1,…, n. 

(Note that 
 
D

1
 = 0, giving total interior demand 

 
D

n
= D1 + ··· + Dn 1). 

Thus we obtain  

 

H
0

H
n
= r

v
Q

v
| Q

v
|=

v=1

n

r
v
(Q

1
D

v
)

v=1

n

| Q
1

D
v

| .  

Left-Sided Inflow 

 Consider first the case where Q1  
 
D

n
 (that is, all flow 

directions in the pipe sequence are positive) and observe that 

the coefficients r /r formally satisfy the properties of a 

probability distribution. Defining the spatial flow 

distribution vectors Q = (Q1,…,Qn) and similarly D = 

(
 
D

1
,…,

 
D

n
) etc., one obtains  

  

H
0

H
n
= r

r
v

rv=1

n

Q
v

2
= rE(Q2 )

= r[E(Q)2
+ (E(Q2 ) E(Q)2 )] = rE(Q)2

+ rVar(Q).

(28) 

 The first term can be interpreted as the pressure loss of a 
weighted average flow rate with respect to the 
“probabilities” r /r,  

  

r
v

rv=1

n

Q
v
= E(Q) = E(Q

1
D) = Q

1
E(D).  

 The second term can be interpreted as an additional 
pressure loss due to the variance of the individual flow rates, 
which equals the flow-independent variance of the 
accumulated demands,  

E(Q
2
)  E(Q)

2 
= Var(Q) = Var(Q1  D ) = Var

 
(D) . 

Since 
 
D

1
 = 0, this variance vanishes if and only if all 

interior demands vanish.  

Right-Sided Inflow 

 Consider next the situation for Q1  0, which is similar to 

Q1 
 
D

n
 except that the flow now has the opposite direction, 

and we have a pressure loss from node n to node 0,  

H0  Hn  = rE(Q)
2 

 rVar(Q) = rE(Q)
2

 rVar
 
(D) . 

 With the demand redistribution defined in (27), the 

fictitious pipe’s flow rate is E(Q),  

  

Q
1

D
0

int
= Q

1

r
μ

r0<v<μ n

D
v
= Q

1
E(D) = E(Q),  

thus resulting precisely in the first term of the pressure loss 
(28) according to the PKr model. The constant variance term, 
however, cannot be obtained in this pipe model—a 
qualitative defect of the single pipe replacement (reason 3).  

 By symmetry, the relevant quantities above can also be 
expressed in terms of Qn rather than Q1. If we define  

D  = D :n 1,  = 1,…, n, 

so that Q  = Qn + D  with Dn = 0 and D1 =
 
D

n
,  this yields 

alternative representations for the actual in-and outflow,  

       Q1 =
 
Q1  

 
D

1   = Qn + D1, 

   Q1  
 
D

n
 = Qn + Dn = Qn, 

and for the (identical) fictitious in-and outflow,  

Q1  
 
D

0

int
= Q1  E

 
(D)  = E(Q) = Qn + E(D) = Qn + 

 
D

n

int
.  

Two-Sided Inflow 

 A second, more serious qualitative defect arises when Q1 

 (0,
 
D

n
), or E(D) < E(Q) < E

 
(D) : in this case, we have 

inflows from both sides, and the total pressure difference H0 

 Hn depends on the location where the inflows meet in the 

pipe sequence. This location has minimal pressure within the 

sequence and occurs either at a unique node whose inflows 

are both smaller than the local demand, or possibly at a 

unique pair of nodes whose (one-sided) inflows equal the 

respective demands, yielding stagnant flow in between. 

Clearly, this situation cannot be modeled by a single 

replacement pipe with just one flow direction (reason 2). 

Without simplifications, the PKr friction model yields a 

piecewise quadratic dependence where the curvature has 

jump discontinuities at Q1  =
 
D

v
(or Qn = D ),  = 1,…, n.  

 Denoting the fictitious flow E(Q) as Q and the values 
E

 
(D),  + E(D) as D , D

+ 
, respectively, we suggest to use a global 

smoothing for the entire sequence by approximating the 
pressure difference for Q (D , D

+
) with the unique 

polynomial of degree five, which has C
2 

junctions with the outer 

pieces at Q = D
 
and Q = D

+
:  

 

(Q) = c
k
Qk ,

k=0

5

 

where the coefficients ck are obtained from a linear equation 
system representing the matching conditions. The resulting 
replacement model (“generalized pipe”) has three benefits: 
the constant variance term is included, inflows from both 
sides are suitably modeled, and all discontinuities disappear. 
Letting V = Var

 
(D)  = Var(D), one thus gets a global C

2 

representation consisting of three pieces; (see Fig. (5)):  

 

Fig. (5). Three-piece C
2 

model of pressure loss in a pipe sequence. 

 

H
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H
n
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rQ2 rV, Q D ,
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4.3. Short Pipes 

 The pressure loss along a short pipe is often negligible so 
that the pipe can be collapsed into a single node; see Fig. (6). 
Such collapsing may even be possible for entire subnetworks 
(consisting of junctions and sufficiently short pipes only), 
which is typical for residential or industrial areas.  

                    

Fig. (6). Collapsing short pipes and subnetworks. 

 The following algorithm is used for collapsing 
subnetworks.  

(1)  Input: a subset of pipes that must not be removed 
from the graph, A0 Api, and the maximal length of a 
“short” pipe, Lmax.  

(2)  Determine the set of short pipes eligible for removal,  

Ashort = {a Api \ A0: La  Lmax}. 

(3)  Determine the network subgraph induced by Ashort, 
with connected components Gl =(Nl, Al).  

(4)  Collapse each connected component Gl to a single 
junction l having demand Dl:  

  

D
1
= D

j
.

j N
t

 

 For the network of Berliner Wasserbetriebe, the maximal 
length of a “short” pipe has empirically been set to 500m 
after several experiments; this value represents the best 
compromise of model accuracy and computation time. The 
reduced main network then has 413 nodes and 608 links. 
The threshold length may be gradually decreased in the 
future with increasing computing power.  

5. RESULTS  

 We consider the municipal drinking water network of 
Berliner Wasserbetriebe, which has nine waterworks and 
eight additional pumping stations, five of which are 
equipped with tanks. The total length of all pipes is 7800 km. 
There are 256000 household connections, serving a yearly 
consumption demand of over 200 million m

3 
with daily 

demands ranging between roughly half a million and one 

million m
3
.  

 In the waterworks, raw water is extracted via 
groundwater wells from reservoirs. After treatment, the pure 
water is stored in tanks and then pumped into the pressurized 
distribution network. Control actions to be planned include 
raw water pumping, pure water pumping, filling and 
emptying of the tanks, and setting of the control valves.  

 In order to investigate how optimal solutions change with 
the operating conditions, we consider four scenarios with 
different combinations of  

 

Fig. (7). Optimal raw water production at BEE and TIE, and tank inflows at COL and MAR (m
3
/h). Scenarios 1 (top left), 2 (top right), 3 

(bottom left), and 4 (bottom right).  
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• the demand: normal and high;  

• electricity prices: constant and variable;  

• groundwater extraction fees: current and previous.  

 The normal daily demand is 585000 m
3
, the fictitious high 

demand is one million m
3
.  

 Electricity prices differ between the providers in Berlin and 

in the federal state of Brandenburg where the waterworks 
Stolpe is located. In the scenario with variable electricity 
prices, a reduction by about 13% has been applied at the 
waterworks Stolpe during nighttime (18:00-08:00).  

 The groundwater extraction fees (GEG, Grundwasserent-
nahmeentgelt in German) also differ between the waterworks 
of Berlin and Brandenburg. They are about six times higher 
in Berlin compared to the fees in the federal state of 
Brandenburg. Within Berlin, the current groundwater 
extraction fees are identical all over the city, whereas 
previous fees have been reduced at the waterworks Spandau 
and Tegel.  

 In the following, every figure compares for some 
quantity of interest the time histories of the following four 
scenarios:  

(1)  fixed electricity price, current GEG, normal demand 
(top left, reference);  

(2)  fixed electricity price, current GEG, high demand 
(top right);  

(3)  fixed electricity price, previous GEG, normal demand 
(bottom left);  

(4)  variable electricity price, current GEG, high demand 
(bottom right).  

 The behavior of the entire network is much too complex 
to visualize; we therefore focus on a selected area in the 
southern uptown. This area is mainly served by the two 
waterworks Beelitzhof (BEE) and Tiefwerder (TIE), and it 
includes three pumping stations: Columbiadamm and 
Marienfelde (COL and MAR, with tanks), and Kleistpark 
(KLE, without tank). Note that the GEG differences (at 
Spandau and Tegel) and the nighttime reduction of the 
electricity price (at Stolpe) occur far from the area of 
interest; nevertheless we will see effects on the optimal 
operation schedules.  

 Fig. (7) displays the raw water production at waterworks 
BEE and TIE, and the tank inflows at pumping stations COL 
and MAR. We observe that the raw water production is quite 
steady, as desired. Production is low during nighttime and 
high during daytime at almost constant levels. The slopes in 
between are also constant, showing that the gradient 
constraint (8) is binding. In scenarios 1 and 3 (normal 
demand) we have brief transitions between long periods with 
constant levels, and in scenarios 2 and 4 (high demand) we 
have a long nighttime transition and a brief constant daytime 
period. The two waterworks are always active in either case. 
In the case of normal demand, only one pumping station 

 

Fig. (8). Optimal discharge flows into the southern uptown at BEE, TIE, COL, MAR, and KLE (m
3
/h). Scenarios 1 (top left), 2 (top right), 3 

(bottom left), and 4 (bottom right).  
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(COL) fills its tank during a brief period (either before 
midnight or in the early morning, depending on the GEG), 
whereas heavier nightly tank inflow and an additional late-
afternoon inflow occur at both COL and MAR in the case of 
high demand. If the GEG is reduced, both BEE and TIE 
produce significantly less water than in the reference case. 
The reduction of the nighttime electricity price at the distant 
waterworks Stolpe has no visible effect here.  

 Fig. (8) displays the outlet flow rates to the southern 
uptown at waterworks BEE and TIE, and at pumping stations 
COL, MAR, and KLE. In the reference case (normal 
demand), the outflow at TIE varies only slightly whereas 
BEE roughly follows the demand profile and KLE is under 
heavy load during the morning and evening peaks. Pumping 
station COL contributes a small share between the peak 
times. In scenario 2 (high demand) the behavior is totally 
different. Both BEE and TIE are under heavy load during 
daytime and still active at nighttime, while both COL and 
MAR feed the network only during the morning peak. 
Pumping station KLE works continuously during day and 
night, supplying a substantial share of water from a 
neighboring pressure zone where plants with high capacity 
and high efficiency are located. This effect is even more 
pronounced with reduced GEG at Spandau and Tegel 
(scenario 3), where KLE becomes the main source in 
compensating for the reduced production at BEE and TIE. 
Variable electricity costs result in lower nighttime supply 
from KLE and increased supply from TIE.  

 Fig. (9). displays the outlet pressures at waterworks BEE 
and TIE, and at pumping stations COL, MAR, KLE. In the 
case of normal demand we observe only slight pressure 
variations, as desired. Note that pumping stations COL and 
MAR reach their maximal pressures during nighttime, 
although they are not pumping. The reason is that 
consumption is low, hence there is very little pressure loss 
from the waterworks outlets to the customers. If the demand 
is high, there are substantial variations, especially before and 
during the morning peak, when the pressures reach their 
maximal values. A reduction of the GEG or the electricity 
price does not result in significant differences, except for 
higher nighttime pressure at TIE and lower pressure at KLE 
in scenario 4, corresponding to altered pump operation.  

 Fig. (10) displays the tank filling levels at waterworks 
BEE and TIE, and at pumping stations COL and MAR. In 
the case of normal demand, the filling level at TIE is almost 
constant, and the tank is deflated very slightly during 
daytime. The tank at BEE is filled during peak times and 
deflated in between. In the reference case, the tank at COL is 
full most of the time and is deflated during the evening peak, 
while the filling level at MAR remains constant. With 
reduced GEG (scenario 3) the level at COL remains constant 
while the tank at MAR shows an insignificant deflation 
during nighttime. The slight variations are partly caused by 
the constant electricity prices. Another reason is that the 
potential energy of the water is higher when the tanks are 
full, which reduces the power consumption of the outlet 

 

Fig. (9). Optimal outlet pressures into the southern uptown at BEE, TIE, COL, MAR, and KLE (bar). Scenarios 1 (top left), 2 (top right), 3 

(bottom left), and 4 (bottom right).  
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pumps. In the case of high demand, the tanks at BEE and 
TIE are operated as in scenario 1 but with somewhat greater 
deflation, while the tanks at COL and MAR are both 
substantially deflated during daytime. This holds irrespective 
of the reduced nighttime electricity price which, however, 
causes permanently lower filling levels at TIE.  

6. SUMMARY  

 We have presented a method for network-wide operative 
planning in pressurized water distribution networks that is 
practically applicable to large networks and under a wide 
range of operating conditions. An optimization module 
implementing our approach is integrated into the operational 
control system at Berliner Wasserbetriebe, where it is used 
for the daily planning. Such an integration is emphasized in 
[8] as the “hook” that interests the city water managers in 
trusting and, ultimately, using the system. Notwithstanding 
this correct assessment, carefully dovetailed optimization 
models and numerical methods are essential for obtaining 
meaningful results, given the enormous complexity of the 
planning problem. Apart from sub-model approximations, 
convergence acceleration techniques, and the like, our 
approach features a network reduction strategy whose 
tradeoff between accuracy and numerical effort can be 
adjusted via a scalar parameter. It also features smooth 
minimum up and down time constraints which, in 
combination with pump aggregation, enable us to handle 
pump switching without introducing integral decision 
variables. Individual pump schedules are obtained in a post-
processing step by solving separate mixed-integer NLP 
models (MINLP) locally at each outlet, with flows and 
pressures given by the network-wide NLP solution. The 

degree of detail for optimization in Berlin is mainly limited 
by what can be achieved in reasonable response time (up to 
30 minutes) on affordable hardware (a PC workstation). 
From the modeling side, direct extensions to network-wide 
mixed-integer optimization as well as detailed component 
models are already available [41]. This allows for more 
accurate optimization as soon as faster hardware or improved 
algorithms become available. The use of the current NLP 
model is likely to result in further gains in efficiency by the 
development of custom sparse solvers based on similar 
techniques as in [35, 54]; in such a way, the rich sparse 
structure induced by the network model and time 
discretization can be exploited.  
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