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Abstract. When considering cost-optimal operation of gas transport net-
works, compressor stations play the most important role. Proper modeling
of these stations leads to complicated mixed-integer nonlinear and nonconvex
optimization problems. In this article, we give an isothermal and stationary
description of compressor stations, state MINLP and GDP models for operating
a single station, and discuss several continuous reformulations of the problem.
The applicability and relevance of different model formulations, especially of
those without discrete variables, is demonstrated by a computational study on
both academic examples and real-world stations.

1. Introduction

Natural gas is one of the most important energy sources. In 2013, it accounted for
25% of the fossil energy used in Europe [18]. It is used in industrial processes, for
heating and, more recently, for natural gas vehicles. Especially in Germany, its low
price leads to its role as a “bridging energy” during the transition to a future energy
mix based primarily on regenerative energy. In Europe, natural gas is transported
through pipeline networks with a total length of 100 000 km. Gas transport in
pipeline networks is pressure-driven, i.e., the gas flows from higher to lower pressure.
Thus, pipeline-based gas transport requires compressor stations. The power required
to compress the gas is delivered by drives that use either electrical power or gas
from the network itself. The energy consumption of compressors is responsible for a
large fraction of the variable operating costs of a gas network.

In this article we focus on the stationary optimization of a single compressor
station. More specifically, we consider fixed boundary conditions, i.e., fixed inflow
and outflow pressures together with a fixed throughput, and ask the following
questions:

• Can the station be operated in a way that satisfies the given boundary
conditions? In other words: are those boundary conditions feasible?

• If the boundary conditions are feasible: What is a minimum cost operation
that satisfies the boundary condition?

Transport of natural gas has been a rich source of mathematical optimization
problems for roughly half a century. The first publications on optimization in gas
networks address tree-like or gun-barrel topologies with dynamic programming as a
solution technique [53, 54] (see [8] for a later survey). In the following, we give a
brief overview on mathematical optimization in this field. More extensive reviews
can be found in [25].
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One main branch of research investigates the problems of minimum cost operation
and feasibility testing. These problems require models of complete gas networks
comprising various types of elements like pipes, compressors, (control) valves, etc.
The combination of nonlinear gas physics with the switching of controllable network
elements typically leads to mixed-integer nonlinear optimization models (MINLPs);
see, e.g., [10, 12]. One standard approach for tackling these MINLPs is the application
of (piecewise) linearizations of the nonlinearities in order to reduce the problems
to mixed-integer linear models (MILPs) [21, 22, 31, 32, 33]. Other investigations
focus on the nonlinear aspects under fixed discrete controls [16, 17, 42, 43, 45], or
attempt to approximate discrete aspects by continuous reformulations [40, 41]. For
more references and reviews in the areas of cost minimization and feasibility testing
we refer to [25].

The second major research branch that we want to highlight considers selected
types of network elements and studies them in more detail. For pipes, theoretical
studies include the controllability and stabilization of the governing system of partial
differential equations, the Euler equations (cf. [1, 2, 5]). The best-investigated
problem for compressor stations is the one considered in this paper, which is of
nonconvex MINLP type: minimum cost operation under given boundary conditions
[7, 9, 24, 36, 55]. See also [28] for a simulation based model of compressor stations
and [35] for a recent survey on modeling centrifugal gas compressors. As already
mentioned, the compressor stations are the dominant variable cost factor in gas
network operation.

In this article we study discrete-continuous models for the problem of minimum
cost compressor station operation. We give an almost complete isothermal de-
scription of all relevant devices and their interplay. This description is comparable
in accuracy with isothermal simulation models. However, we neglect some minor
model aspects that would only complicate the presentation without influencing the
solutions significantly. The specific structure of the resulting MINLP allows for a
large variety of continuous reformulations that will be discussed in detail and applied
to the problem under consideration. The approach of continuous reformulation is in
line with recent publications that develop MPEC techniques for reformulating other
discrete aspects of network optimization models [25, 37, 40, 41]. Thus, by combining
the MPEC techniques from the cited publications with the reformulation schemes
discussed in this paper, it is possible to formulate purely continuous NLP type
models of problems of minimum cost operation or feasibility testing. The outcome of
this achievement is twofold. First, it allows us to state highly detailed models of gas
networks. This in particular is not viable with approaches based on linearizations
since the resulting MILP models tend to be very hard for state-of-the-art MILP
solvers. Second, it allows us to solve the resulting models with local NLP solvers,
which are typically faster than global MI(N)LP solvers. Obviously, this comes at the
price of finding only locally optimal solutions. For further applications of continuous
reformulations of discrete-continuous optimization problems, especially in the field
of process engineering, see [3, 26, 27, 44].

The paper is organized as follows. The problem of optimizing a gas compressor
station under steady-state boundary conditions is presented in Sect. 2. Afterwards,
Sect. 3 introduces a mixed-integer nonlinear formulation of the problem and briefly
discusses an equivalent general disjunctive programming formulation. Then, in
Sect. 4, the concept of pseudo NCP functions is introduced and a collection of
continuous reformulation techniques is discussed that can be applied to the MINLP
model of Sect. 3. These reformulations are applied to artificial and real-world
instances of the problem in Sect. 5 and the solutions are compared. Finally, Sect. 6
gives some remarks on further work and open questions.
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Table 1. Principal physical quantities and constants

Symbol Explanation Unit

p Gas pressure Pa
T Gas temperature K
ρ Gas density kgm−3
z Compressibility factor 1
q Mass flow rate kg s−1
Q Volumetric flow rate (Q = q/ρ) m3 s−1

m Average molar mass of gas mixture kgmol−1
pc Pseudocritical pressure of gas mixture Pa
Tc Pseudocritical temperature of gas mixture K

R Universal gas constant Jmol−1 K−1
Rs Specific gas constant (Rs = R/m) J kg−1 K−1

2. Problem Description

A compressor station hosts a fixed number of compressor machines called units. It
can operate in finitely many discrete states that arise from the three operation modes
(closed, bypass mode, and active) and a certain number of configurations in the active
mode. Every configuration consists of a serial combination of parallel arrangements
of compressor units, see Fig. 2. Every compressor unit has an associated drive that
provides the power for compressing the gas. For ease of exposition we assume that
every drive powers just a single compressor unit. We also neglect the frictional
pressure loss caused by station piping, measurement devices, etc., which is usually
modeled by fictitious elements called resistors.

In this section we present the required models of all types of compressor machines
and drives and then describe their interplay. Full details can be found in [42] where
models of all network elements have been developed. For later reference, the models
are presented in constraint form, with constraint functions being denoted by c and
super-indexed with an abbreviated name indicating the semantics of the constraint.

2.1. Physical Quantities. The dynamics of natural gas is modeled in terms of
the mass flow q, pressure p, temperature T , and density ρ, where p,T , ρ are coupled
by an equation of state. In specific, we use the thermodynamical standard equation,

ρ(p,T , z) =
p

RszT
.

Here the compressibility factor z models the deviation between real and ideal gas,
for which we use an empirical formula of the American Gas Association (AGA),

z(p,T ) = 1 + 0.257p/pc − 0.533
p/pc
T/Tc

.

We will later formulate certain constraints using ρ(p,T , z) and z(p,T ) with fixed T .
Finally we need the volumetric flow Q, given by the constraint

0 = cflow-conv(q, ρ,Q) = q − ρQ.

See Table 1 (or [42]) for explanations of the physical quantities and constants.

2.2. Boundary Conditions. We are interested in feasibility testing and in com-
puting cost optimal controls of a compressor station for given boundary values. In
accordance with our general network models [42], a compressor station is seen as an
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Table 2. Compressor quantities

Symbol Explanation Unit

Had Specific change in adiabatic enthalpy kg J−1
ηad Adiabatic efficiency 1
P Compressor input power W
qfc Fuel consumption kg s−1
b Specific energy consumption W
Hu Lower calorific value Jmol−1
n Compressor speed s−1
κ Isentropic exponent 1

M Shaft torque Nm
Vop Operating volume m3

arc a = (u, v) of a directed network graph G = (V,A). The boundary conditions at
which the compressor station a has to operate consist of a mass flow range,

qa ∈ [q−a , q+a ],

and of inlet and outlet pressure ranges,

pu ∈ [p−u , p+u ], pv ∈ [p−v , p+v ].

Each of the values qa, pu, pv can be fixed by setting its bounds to identical values.

2.3. Compressor Machines. We distinguish turbo compressors and piston com-
pressors and start with the common parts of their models. For an overview of
relevant compressor quantities see Table 2.

The compression of a gas stream from pin to pout results in a specific change in
adiabatic enthalpy, Had:

0 = cad-head(Had, pin, pout, zin) = Had − zinTinRs
κ

κ− 1

((
pout
pin

)κ−1
κ

− 1

)
.

Here zin = z(pin,Tin), and we assume that the isentropic exponent κ is constant.
The power P required for compressing the mass flow q is given by

0 = cpower(P , q,Had, ηad) = P − qHad

ηad
.

Its upper limit is the maximal power P+ that the associated drive can deliver:

0 ≤ cpower-limit(P ,P+) = P+ − P . (1)

2.4. Turbo Compressors. Turbo compressors are modeled by characteristic dia-
grams in (Q,Had)-space, see Fig. 1 (left). The curves are defined using biquadratic
and quadratic polynomials F2(x, y;A) and F1(z; b) whose coefficients A and b are
obtained from least-squares fits for given measurements of the compressor:

F2(x, y;A) =

 1
x
x2

T  a00 a01 a02
a10 a11 a12
a20 a12 a22

 1
y
y2


and

F1(z; b) =

 b0
b1
b2

T  1
z
z2

 .
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Figure 1. Characteristic diagrams of a turbo compressor (left) and a
piston compressor (right)

The isolines of speed n (solid) and adiabatic efficiency ηad (dashed) are given by:

0 = ciso-speed(Had,Q,n) = Had − F2(Q,n;AHad),

0 = ciso-eff(ηad,Q,n) = ηad − F2(Q,n;Aηad).

The compressor’s operating range (grey area) is bounded by the isolines of minimal
and maximal speeds n±, by the surgeline (left), and by the chokeline (right),

0 ≤ csurge(Q,Had) = F1(Q; bsurge)−Had,

0 ≤ cchoke(Q,Had) = Had − F1(Q; bchoke).

2.5. Piston Compressors. Piston compressors are modeled by characteristic dia-
grams in (Q,M)-space, see Fig. 1 (right). The volumetric flow Q satisfies

0 = cop-vol(Q,n) = Q− Vopn,

and the shaft torque M (with constant efficiency ηad) is given by

0 = ctorque(M ,Had, ρin) = M − VopHad

2πηad
ρin.

The speed bounds n ∈ [n−,n+] induce left and right bounds of the operating range,
Q ∈ [Vopn

−,Vopn
+]. The upper limit can be given in one of three forms depending

on the specific compressor: either by a maximum compression ratio ε+,

0 ≤ climit(pin, pout) = ε+ − pout
pin

,

by a maximum pressure increase ∆p+,

0 ≤ climit(pin, pout) = pin + ∆p+ − pout,
or by a maximum shaft torque M+,

0 ≤ climit(M) = M+ −M .

2.6. Drives. The four most frequently used drive types are gas turbines, gas driven
motors, electric motors, and steam turbines. Here we focus on the common model
aspects and consider a generic “catchall” drive model that incorporates the two
main aspects: the maximal power P+ that the drive can deliver (cf. (1)),

0 = cmax-power(P+,n) = P+ − F2(n,Tamb;AP+), (2)
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Figure 2. Complete set of possible configurations of a compressor station
with two machines (a real station may offer only a subset)

and its specific energy consumption b,

0 = cspec-ener-cons(b,P ) = b− F1(P ; ab). (3)

For specific drive types, (2) or (3) may simplify or vanish completely. The fuel
consumption of a gas-powered drive is the mass flow qfc,

0 = cfuel-cons(qfc, b) = qfc − bm

Hu
.

The fuel consumption of an electric drive is zero, 0 = cfuel-cons(qfc, b) = qfc.

2.7. Configurations. Recall that a compressor station can be closed, in bypass
mode, or active. We denote the set of configurations of an active compressor station
by C = {1, . . . ,nC}, the set of serial stages of configuration i ∈ C by Si = {1, . . . ,nSi},
and the set of parallel units of stage j ∈ Si by Pij = {1, . . . ,nPij}. For instance, in
Fig. 2 we have C = {1, . . . , 4} and

nS1 = nS3 = nS4 = 1, nS2 = 2,

nP11
= 2, nP21

= nP22
= nP31

= nP41
= 1.

In what follows, we refer to individual compressor units by the index triple ijk.
Given a triple (qa, pu, pv) of boundary values, the selected configuration i must

satisfy the following: the flow qj of every serial stage j ∈ Si equals qa and is
distributed over the nPij parallel units:

qa = qj =
∑
k∈Pij

qijk for all j ∈ Si.

Moreover, all parallel units in stage j ∈ Si have to increase the gas pressure to a
common outflow value pi,j+1, which becomes the inflow pressure of stage j + 1. The
first and last stages must satisfy pi1 = pu and pi,nSi+1 = pv, respectively.

2.8. Objective Function. There are various reasonable objective functions in our
context, which can mainly be categorized as feasibility or optimization goals. If one
merely wishes to know whether given boundary conditions are feasible, it suffices
to use a zero objective, f ≡ 0. If the boundary conditions are infeasible, it may
be useful to add slack variables to a certain set of constraints and minimize the
total infeasibility, measured by a suitable norm of the vector of slack variables. The
reader interested in problem-specific slack variable formulations for gas network
planning is referred to [43].

If one is convinced of having feasible boundary conditions, it is straight-forward
to minimize operating costs, power, or fuel consumption. Specific objective functions
will be formulated after stating the optimization models in the following section.
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3. Mixed-Integer and General Disjunctive Programming Models

The most natural way to model the problem described in the previous section is
presented in Sect. 3.1: a mixed-integer nonlinear program (MINLP) that incorporates
binary variables for the discrete states of the compressor station. An equivalent
general disjunctive programming (GDP) formulation of the problem is given in
Sect. 3.2. Continuous reformulations of the MINLP and GDP models are discussed
later in Sect. 4.

One further possibility of tackling the problem is to enumerate all states of the
compressor station and solve all the resulting (continuous) problems by a local or
global method. However, this is only suitable when single compressor stations are
considered, whereas continuous reformulations can also be used for models of the
complete transport network. Another way is to apply suitable heuristics, see, e.g.,
[40, 41].

We denote individual continuous variables by x and discrete ones by s. Variable
vectors are written with bold letters, like x or s. Sub-indices refer to corresponding
elements of the compressor station or to sets of elements. In the constraint notation
of Sect. 2, we now also use sub-indices with the same meaning as for variables.
Additional sub-indices E or I distinguish equality and inequality constraints.

3.1. MINLP Formulation. With x ∈ Rn and s ∈ {0, 1}m, the optimization
problem under consideration takes the general MINLP form

min
x,s

f(x, s) s.t. cE(x, s) = 0, cI(x, s) ≥ 0.

The boundary conditions correspond to the variable sub-vector xB = (qa, pu, pv).
For a suitable formulation of the discrete decisions and their implications on

other parts of the model, we review the concept of indicator constraints.

3.1.1. Indicator Constraints. Indicator constraints use a binary indicator variable
to control whether a certain constraint is enabled or disabled. If c(x) is any equality
or inequality constraint with indicator variable s, we denote the associated indicator
constraints generically by

cindE (c(x), s) = 0, cindI (c(x), s) ≥ 0. (4)

The formulation (4) is chosen in such a way that the original constraint c(x) = 0 or
c(x) ≥ 0 must hold if s = 1 whereas it becomes irrelevant if s = 0. In this article
we use two specific types: big-M and bilinear indicator constraints. The big-M
indicator constraints of the equality constraint c(x) = 0 take the form

−M−c (1− s) ≤ c(x) ≤M+
c (1− s). (5)

For the inequality constraint c(x) ≥ 0 we obtain the single inequality

−M−c (1− s) ≤ c(x). (6)

Bilinear indicator constraints for equality and inequality constraints, respectively,
are given by

0 = sc(x) and 0 ≤ sc(x). (7)
The big-M formulation offers the advantage that convex constraints yield convex
indicator constraints. However, the big-M constants must be chosen sufficiently large
to ensure that the constraint is properly enabled or disabled: M−c ≥ |minx c(x)| and
M+
c ≥ |maxx c(x)| in (5), andM−c ≥ |minx c(x)| in (6). Numerical difficulties are to

be expected if M±c are very large. The bilinear formulation avoids this but has the
disadvantage that even convex constraints yield nonconvex indicator constraints. We
later review these issues when discussing the numerical results of different problem
formulations in Sect. 5.
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Finally we need two more notions: an indicator expression y is a term whose
value is y ≥ 1 if the associated state is enabled and zero otherwise, like s in (7).
Conversely, a negation expression is a term whose value is y ≥ 1 if the associated
state is disabled and zero otherwise, like 1− s in (5), (6).

3.1.2. Discrete States. To represent the set of states of a compressor station, we
introduce the binary variable vector

s = ((si)i∈C , sbp, scl) ∈ {0, 1}m, m = |C|+ 2,

with the following interpretation:
• the station is active in configuration i ∈ C if and only if si = 1;
• the station is in bypass mode if and only if sbp = 1;
• the station is closed if and only if scl = 1.

Since precisely one state must be selected, we add the special-ordered-set-1 (SOS-1)
constraint

0 = cop-mode(s) = 1−
(
sbp + scl +

∑
i∈C

si

)
.

In bypass mode, the inflow and outflow pressures have to be identical,

0 = cbypass(pu, pv) = pu − pv,
yielding indicator constraints

0 = cbypass-indE (cbypass(pu, pv), sbp), 0 ≤ cbypass-indI (cbypass(pu, pv), sbp).

Likewise, if the compressor station is closed, we have

0 = cclosed(qa) = qa,

yielding

0 = cclosed-indE (cclosed(qa), scl), 0 ≤ cclosed-indI (cclosed(qa), scl).

3.1.3. Configurations. Now we turn to the details of individual configurations. The
continuous variable vector of configuration i ∈ C reads

xi =


qfci

(pij)j=1,...,nSi+1

(zij)j∈Si
(ρij)j∈Si

(xijk)j∈Si,k∈Pij

 .

Here qfci is the total fuel consumption, pij and pi,nSi+1 denote the inflow pressure of
stage j and the outflow pressure of the last stage, respectively, and zij , ρij represent
the inflow compressibility factor and inflow gas density of stage j. Finally, xijk is
the variable vector of compressor unit ijk and its associated drive, see Sect. 3.1.4.

The inflow quantities zij and ρij are coupled to the physical inflow conditions by
the constraints

0 = ccompr
ij (zij , pij) = zij − z(pij ,T ),

0 = cdensij (ρij , pij , zij) = ρij − ρ(pij ,T , zij).

The total fuel consumption qfci is the sum over all compressor units:

0 = cfuel-1i (qfci , (qfcijk)j∈Si,k∈Pij ) = qfci −
∑
j∈Si

∑
k∈Pij

qfcijk.
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This constraint must be enabled if and only if configuration i is active:

0 = cind-fuel-1E,i (cfuel-1i (qfci , (qfcijk)j∈Si,k∈Pij ), si),

0 ≤ cind-fuel-1I,i (cfuel-1i (qfci , (qfcijk)j∈Si,k∈Pij ), si).

Otherwise configuration i is inactive,

0 ≤ cfuel-0i (qfci , si) = si(q
fc
i )+ − qfci ,

where (qfci )+ is a suitable upper bound of qfci . Next, the inflow and outflow pressures
of the active configuration must equal the inflow and outflow pressures of the station:

0 = cind-p-inE,i (cp-ini (pi1, pu), si),

0 ≤ cind-p-inI,i (cp-ini (pi1, pu), si),

0 = cind-p-outE,i (cp-outi (pi,nSi+1, pv), si),

0 ≤ cind-p-outI,i (cp-outi (pi,nSi+1, pv), si),

where

0 = cp-ini (pi1, pu) = pi1 − pu,

0 = cp-outi (pi,nSi+1, pv) = pi,nSi+1 − pv.
The flow distribution over the parallel units of every stage j finally completes the
configuration model:

0 = cflowij (qa, (qijk)k∈Pij ) = qa −
∑
k∈Pij

qijk, j ∈ Si.

In summary, the equality constraints of configuration i read

0 = cE,i(xB,xi, si) =



(ccompr
ij (zij , pij))j∈Si

(cdensij (ρij , pij , zij))j∈Si
cind-fuel-1E,i (qfci , (qfcijk)j∈Si,k∈Pij , si)

cind-p-inE,i (pi1, pu, si)

cind-p-outE,i (pi,nSi+1, pv, si)

(cflowij (qa, (qijk)k∈Pij ))j∈Si


and the inequality constraints are given by

0 ≤ cI,i(xB,xi, si) =


cind-fuel-1I,i (qfci , (qfcijk)j∈Si,k∈Pij , si)

cind-fuel-0I,i (qfci , si)

cind-p-inI,i (pi1, pu, si)

cind-p-outI,i (pi,nSi+1, pv, si)

 .

3.1.4. Compressor Units and Drives. Lastly, we formulate MINLP models of turbo
and piston compressors within a configuration. The continuous variable vector of a
turbo compressor ν = ijk with its associated drive reads

xν = (Had,ν , qν ,Qν ,nν ,Pν , qfcν , bν ,P+
ν , ηad,ν),

and for a piston compressor ν with associated drive it reads

xν = (Had,ν , qν ,Qν ,nν ,Pν , qfcν , bν ,P+
ν ,Mν).
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The equality constraints of a turbo compressor are then given by

0 = cE,ν(xi, si) =



cflow-convν (qν , ρij ,Qν)
cad-headν (Had,ν , pij , pi,j+1, zij)

cfuel-consν (qfcν , bν)

cind-powerE,ν (Pν , qν ,Had,ν , ηad,ν , si)

cind-iso-speedE,ν (Had,ν ,Qν ,nν , si)

cind-iso-effE,ν (ηad,ν ,Qν ,nν , si)

cind-max-power
E,ν (P+

ν ,nν , si)

cind-spec-ener-consE,ν (bν ,Pν , si)


,

and its inequality constraints read

0 ≤ cI,ν(xi, si) =



cind-surgeI,ν (Qν ,Had,ν , si)

cind-chokeI,ν (Qν ,Had,ν , si)

cind-powerI,ν (Pν , qν ,Had,ν , ηad,ν , si)

cind-iso-speedI,ν (Had,ν ,Qν ,nν , si)

cind-iso-effI,ν (ηad,ν ,Qν ,nν , si)

cind-power-limit
I,ν (Pν ,P+

ν , si)

cind-max-power
I,ν (P+

ν ,nν , si)

cind-spec-ener-consI,ν (bν ,Pν , si)


.

Here we introduce indicator constraints to disable the associated limits of physical
and technical quantities of inactive configurations: otherwise irrelevant infeasible
values of those inactive configurations would render the entire compressor model
infeasible.

The equality constraints of a piston compressor are given by

0 = cE,ν(xi, si) =



cflow-convν (qa, ρij ,Qν)
cad-headν (Had,ν , pij , pi,j+1, zij)

cfuel-consν (qfcν , bν)
ctorqueν (Mν ,Had,ν , ρij)

cind-powerE,ν (Pν , qν ,Had,ν , ηad,ν , si)

cind-op-volE,ν (Qν ,nν , si)

cind-max-power
E,ν (P+

ν ,nν , si)

cind-spec-ener-consE,ν (bν ,Pν , si)


,

and the inequality constraints read

0 = cI,ν(xi, si) =



climit
ν (pij , pi,j+1) or climit

ν (Mν)

cind-powerI,ν (Pν , qν ,Had,ν , ηad,ν , si)

cind-op-volI,ν (Qν ,nν , si)

cind-power-limit
I,ν (Pν ,P+

ν , si)

cind-max-power
I,ν (P+

ν ,nν , si)

cind-spec-ener-consI,ν (bν ,Pν , si)


.

Here the indicator constraints are introduced for the same reason as for turbo
compressors.

3.1.5. Model Summary. As already mentioned, we may choose the objective f ≡ 0
if we are only interested in feasibility testing. If we aim at minimum cost operation,
a suitable objective is

f(x) =
∑
i∈C

si
∑
j∈Si

∑
k∈Pij∩U fuel

ωfuelqfcijk +
∑
i∈C

si
∑
j∈Si

∑
k∈Pij∩Uel

ωelPijk, (8)
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where U fuel and Uel are the sets of fuel gas and electricity driven compressor units,
respectively, and ωfuel and ωel represent fuel gas and electricity costs. The complete
MINLP model is then obtained with the variable vector

x = (xB, (xi)i∈C)

and the constraints

cE(x, s) =


cop-mode(s)

(cE,i(xB,xi, si))i∈C
(cE,ijk(xi, si))i∈C,j∈Si,k∈Pij
cbypass-indE (pu, pv, sbp)
cclosed-indE (qa, scl)

 ,

cI(x, s) =


(cI,i(xB,xi, si))i∈C

(cI,ijk(xi, si))i∈C,j∈Si,k∈Pij
cbypass-indI (pu, pv, sbp)
cclosed-indI (qa, scl)

 .

3.2. General Disjunctive Programming Formulation. Here we present a gen-
eral disjunctive programming (GDP) formulation [23, 39] of the cost minimization
problem:

min γbp + γcl +
∑
i∈C

γi (9a)

s.t.
∨
i∈C



si(
cE,i(xB,xi)

(cE,ijk(xi))j∈Si,k∈Pij

)
= 0(

cI,i(xB,xi)

(cI,ijk(xi))j∈Si,k∈Pij

)
≥ 0

γi = ωqfci


(9b)

∨

 sbp
cbypass(pu, pv) = 0

γbp = 0

 ∨
 scl
cclosed(qa) = 0

γcl = 0

 , (9c)

sbp + scl +
∑
i∈C

si = 1. (9d)

GDP models like this are generally built from separate sets of “local” constraints
and objective terms that are combined in a logical disjunction. Every part of the
disjunction is controlled by a decision variable (here sbp, scl, or si, i ∈ C): the local
constraints are enabled if and only if the associated decision variable is true (si = 1),
and the local objective terms γi are set to zero otherwise. The SOS-1 constraint
(9d) ensures that precisely one decision variable is true. In a general GDP, any set
of feasible combinations of decision variables could be defined by a suitable logical
expression. Moreover, “global” constraints and objective terms might be added.

4. Continuous Reformulations

As discussed in Sect. 1, it is reasonable to study continuous reformulations of
the MINLP and GDP models of Sect. 3.1 and 3.2 in order to tackle optimization
problems for compressor stations or entire gas networks with continuous (local)
optimization methods, which tend to be faster than global methods for mixed-integer
nonlinear and nonconvex problems.

This section discusses five model reformulation schemes from the literature that
can be applied to any model with binary variables that exhibit the structure of a
logical disjunction, such as the problem under consideration.
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First we introduce the concepts of NCP and pseudo NCP functions in Sect. 4.1.
Then we present all reformulation schemes and discuss their feasible sets and
regularity properties with a view towards solving them by local algorithms.

4.1. Pseudo NCP Functions. NCP functions are bivariate functions ϕ : R2 → R
with the property that

ϕ(a, b) = 0 ⇐⇒ a, b ≥ 0, ab = 0. (10)

Classical NCP functions include the minimum function ϕmin(a, b) = min(a, b) and
the Fischer–Burmeister function [19],

ϕFB(a, b) =
√
a2 + b2 − (a+ b).

See [46] and the references therein for an overview of NCP functions. NCP functions
can be used to replace binary variables with continuous variables. However, the
right-hand side of (10) introduces some difficulties if it is considered from an NLP
perspective. The constraints a, b ≥ 0, ab = 0 lead to so-called Mathematical
Programs with Equilibrium Constraints (MPECs). The problem is that standard
NLP regularity concepts like the linear independence constraint qualification (LICQ)
or the Mangasarian–Fromovitz constraint qualification (MFCQ) are violated at
every feasible point of an MPEC [56] (see [30] for an overview of the theory and
applications of MPECs). However, the nonnegativity constraints in (10) are not
needed for the reformulations discussed below. This leads us to extend the class of
NCP functions: We call a function φ : R2 → R a pseudo NCP function if

φ(a, b) = 0 =⇒ a = 0 or b = 0.

In the remainder of this article we use the following two pseudo NCP functions:

φprod(a, b) := ab, φFB(a, b) := ϕFB(a, b).

Note that the Fischer–Burmeister φFB function has a lack of regularity, whereas the
product formulation φprod is favorable since we do not have to impose nonnegativity
constraints here as in the classical NCP setting.

4.2. Reformulation Schemes. In this section we discuss five schemes that allow
to reformulate the MINLP and GDP models of Sect. 3.1 and 3.2 with continuous
variables and additional smooth constraints. We discuss the geometry of the feasible
regions of the resulting continuous models and their regularity properties.

To be applicable in the context of the model of Sect. 3.1, the reformulations have
to possess the following properties:

• Every feasible solution of the reformulation has to be uniquely translatable
into a feasible solution of the original MINLP (or GDP). This means that
there exists a mapping (a left-total right-unique relation) from the feasible
set of the reformulation to the feasible set of the original model.

• For every binary variable s ∈ {0, 1}, the reformulation has variables from
which indicator and negation expressions can be constructed (Sect. 3.1.1).
• The reformulation has variables from which the SOS-1 constraint can be

constructed.
In what follows, we only present the representations of a set of binary variables
s1, . . . , sm ∈ {0, 1} together with the SOS-1 constraint

∑m
i=1 si = 1, rather than

stating complete reformulated models. The latter can easily be reproduced from
Sect. 3.1. We frequently use the setsM := {1, . . . ,m} andMi :=M\ {i}.

As already stated in Sect. 1, all reformulation schemes below can be found in the
existing literature (in particular, see [3, 27, 44]), except that we use pseudo NCP
functions rather than NCP functions.
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Figure 3. Left: Feasible set of the exact bivariate reformulation. The
axes are the feasible sets of (11a). Together with (11b) the feasible set
{(1, 0), (0, 1)} (bullets) remains. Right: Feasible set of the approximate
bivariate reformulation. The axes are the feasible sets of (12a) and the
shaded area is the feasible region of (12b). The intersection consists of the
two disjoint bold lines.

4.2.1. Exact Bivariate Reformulation. The first reformulation requires two contin-
uous variables (σi, τi) ∈ R2 per binary variable si together with the constraints

φ(σi, τi) = 0 for all i ∈M, (11a)
σi + τi = 1 for all i ∈M, (11b)∑
i∈M

σi = 1, (11c)

where φ is an arbitrary pseudo NCP function. Clearly, the constraints (11) imply
(σi, τi) ∈ {(1, 0), (0, 1)}, giving the required mapping:

(σi, τi) = (1, 0) 7→ si = 1, (σi, τi) = (0, 1) 7→ si = 0.

An indicator expression is σi and valid negation expressions are τi or (1− σi). The
feasible region of (11) is illustrated in Fig. 3 (left).

Since this scheme adds 2m continuous variables and 2m+ 1 equality constraints,
it introduces a lack of regularity (in the LICQ and MFCQ sense) in the (σi, τi)-space.
However, (11) can be equivalently reformulated by replacing (11a) with

φ(σi, τi) = 0 for all i ∈M1, σ1 ≥ 0.

For φ ∈ {φprod,φFB}, it can be shown that the latter formulation satisfies the LICQ
if and only if σ1 6= 0. Of course,M1 can be replaced with every otherMj .

4.2.2. Approximate Bivariate Reformulation. The second reformulation works like
the first one but relaxes (11b):

φ(σi, τi) = 0 for all i ∈M, (12a)
σi + τi ≥ 1 for all i ∈M, (12b)∑
i∈M

σi = 1. (12c)

The feasible set is illustrated in Fig. 3 (right): it is readily seen that (σi, τi) ∈
({0} × [1,∞)) ∪ ([1,∞)× {0}), and that exactly one i ∈M exists with σi = 1 and
σj = 0 for all j 6= i. Here we have added 2m variables with m+ 1 equality and m
inequality constraints. Depending on the activity status of inequalities, the LICQ
might be satisfied or again be violated. An indicator expression is σi and a valid
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σi

0 1
σi

0 1

Figure 4. Left: Feasible set {0, 1} of the exact univariate reformulation
(13) and the alternative exact univariate reformulation (14). Right: Feasible
set {0} ∪ [1,∞) of the alternative univariate reformulation (15).

negation expression is given by τi. This scheme cannot be reformulated again like
the exact bivariate reformulation since one would lose the property of being able to
formulate indicator and negation expressions.

4.2.3. Exact Univariate Reformulation. This scheme requires only one continuous
variable σi per binary variable si and adds the following constraints:

φ(σi, 1− σi) = 0 for all i ∈M, (13a)∑
i∈M

σi = 1. (13b)

The feasible set is shown in Fig. 4 (left). Clearly we have σi ∈ {0, 1} for all i ∈M.
An indicator expression is σi and a negation expression is (1− σi). The number of
equality constraints exceeds the number of variables again by one (m+ 1 vs. m),
but (13) can be equivalently replaced with

φ(σi, 1− σi) = 0 for all i ∈M1, σ1 ≥ 0,∑
i∈M

σi = 1,

satisfying the LICQ for φ ∈ {φprod,φFB} if and only if σ1 6= 0.

4.2.4. Alternative Exact Univariate Reformulation. Here, the set of constraints reads

φ(σi,
∑
j∈Mi

σj) = 0 for all i ∈M, (14a)∑
i∈M

σi = 1. (14b)

These constraints imply φ(σi, 1− σi) = 0, yielding σi ∈ {0, 1} for all i. As before,
there is one more equality constraint than variables (m+ 1 vs. m), and we have the
equivalent reformulation

φ(σi,
∑
j∈Mi

σj) = 0 for all i ∈M1, σ1 ≥ 0,∑
i∈M

σi = 1.

In both cases, an indicator expression is σi and a negation expression is (1 − σi)
or, equivalently,

∑
j∈Mi

σj . The feasible set is the same as before, see Fig. 4 (left).
Again, the LICQ is satisfied for φ ∈ {φprod,φFB} if and only if σ1 6= 0.

4.2.5. Approximate Univariate Reformulation. The set of constraints for the final
scheme is given by

φ(σi,
∑
j∈Mi

σj) = 0 for all i ∈M, (15a)∑
i∈M

σi ≥ 1. (15b)

The feasible set is illustrated in Fig. 4 (right). Clearly we have σi ∈ {0} ∪ [1,∞) for
all i. An indicator expression is σi, and a negation expression is

∑
j∈Mi

σj . This
reformulation has the disadvantage that it always violates the LICQ for both φprod



COMPUTATIONAL OPTIMIZATION OF GAS COMPRESSOR STATIONS 15

Table 3. Summary of all reformulation schemes. Index 1 denotes the first
version and index 2 denotes the second version of the reformulation.

Section Variables |E1| |E2| |I1| |I2| exact/approx.

4.2.1 2m 2m+ 1 2m 0 1 exact
4.2.2 2m m+ 1 — m — approx.
4.2.3 m m+ 1 m 0 1 exact
4.2.4 m m+ 1 m 0 1 exact
4.2.5 m m m− 1 1 2 approx.

and φFB, even if the inequality constraint (15b) is not active. Again, (15) can be
equivalently reformulated by replacing (15a) with

φ(σi,
∑
j∈Mi

σj) = 0 for all i ∈M1, σ1 ≥ 0.

This formulation satisfies the LICQ for φ ∈ {φprod,φFB} if and only if σ1 6= 0.
Table 3 lists the main properties of the five reformulation schemes.

5. Computational Study

In the preceding sections we have discussed the problem of compressor station
optimization and we have presented several model formulations. With these formu-
lations at hand, the question arises whether all models are comparably well suited
for numerical computations, or whether there are benefits or disadvantages for any
of the models. In this section we present an extensive computational study and com-
pare the results of local and global solvers applied to different model formulations.
We will see that the continuous reformulations work quite well when compared to
MINLP approaches.

Section 5.1 introduces two compressor stations with boundary conditions as test
instances and describes the hardware and software used in the study. Section 5.2
then discusses performance profiles for measuring performance and robustness of
different model formulations and solvers. Subsequently, Sects. 5.3 and 5.4 present
the numerical results, and Sect. 5.5 gives a summary of the computational study.

5.1. Test Instances and Computational Setup. We consider minimum cost
problems using the objective (8) with cost coefficients ωfuel = 0.024e/(kg/s) and
ωel = 0.14e/kW. This objective is combined with all presented models for two
different compressor stations. The first station, called GasLib-582 station in the
following, is compressorStation_5 from the network GasLib-582 [20]. It contains
one turbo compressor and one piston compressor and can be operated in three
configurations. This station is comparatively small and serves as a proof of concept
for the applicability of the continuous reformulations. Moreover, the data of this
test set are publicly available, so that other researchers can compare their models
or algorithms on the same data. The second station, called HG station in the
following, is a real-world compressor station of our former industry partner Open
Grid Europe1 (OGE). It is one of OGE’s largest compressor stations, containing
five turbo compressors that can be operated in 14 configurations in our model.
The results on this station illustrate the applicability of the presented models on
real-world data.

The boundary values for our test instances are constructed as follows. We
always prescribe the in- and outflow pressures as well as the flow through the
station. For both stations, the set of inflow pressures (in bar) is Pin = {20, 50, 80}.

1https://www.open-grid-europe.com

https://www.open-grid-europe.com
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For every inflow pressure pin ∈ Pin, we then construct a set of outflow pressures
Pout,i(pin) = {pin + k∆pi : k = 0, . . . , 3}, i = 1, 2, where ∆p1 = 13.3bar (GasLib-582
station) and ∆p2 = 20 bar (HG station). The sets of flows (in 103 Nm3 h−1) are
Q1 = {0, 375, 750, . . . , 2250} (GasLib-582 station) and Q2 = {0, 800, 1600, . . . , 4800}
(HG station). Thus, the complete set of boundary conditions for the GasLib-582
station is

T1 = {(pin, pout,Q0) : pin ∈ Pin, pout ∈ Pout,1(pin),Q0 ∈ Q1},
and the corresponding set for the HG station is

T2 = {(pin, pout,Q0) : pin ∈ Pin, pout ∈ Pout,2(pin),Q0 ∈ Q2}.
All values are chosen based on our experience with the technical capabilities of
the stations and with typical values in gas networks. Note that the flow values for
the test sets are given in terms of volumetric flow under normal conditions, Q0,
measured in 1000 normal cubic meters per hour, as this is the standard technical
unit in gas transportation. It can easily be converted to mass flow via q = cQ0ρ0,
where c = 1000/3600, and ρ0 is the gas density under normal conditions. The sizes
of the test sets are |T1| = |T2| = 84.

All models are implemented using the modeling language GAMS [34] and the C++
software framework LaMaTTO++ [29]. As global solvers for the MINLP model and
its continuous (NLP type) reformulations we use BARON 12.3.3 [47, 48, 49] and
SCIP 3.0 [50, 51]. Additionally, we use the convex MINLP solver KNITRO 8.1.1 [6]
as a heuristic for the nonconvex MINLPs and as NLP solver for the continuous
reformulations. As local solvers for the continuous reformulations we use the interior-
point code Ipopt 3.11 [52] and the reduced-gradient code CONOPT4 [13, 14, 15]
as well as the three MINLP solvers. The solvers are run with default settings
throughout, even for solution tolerances, as it is virtually impossible to find settings
that make the results comparable in a strict mathematical sense.

All computations are executed on a six-core AMD Opteron Processor 2435 with
2600MHz and 64GB RAM. The operating system is Debian 7.5.

5.2. Measuring Performance and Robustness. To compare the computing
times of different combinations of model formulations and solvers, we use standard
performance profiles [11]. To this end, let us define the performance measure

tp,s := computing time required to solve problem p ∈ Ti by s ∈ S,

where the set S contains all 106 combinations of model formulations and solvers: the
MINLP model in big-M and bilinear product formulation combined with BARON,
SCIP, and KNITRO (1× 2× 3 = 6), and each of the five continuous reformulations
in four variants (big-M and bilinear product with both pseudo NCP functions each)
combined with all five solvers (5× 4× 5 = 100). We consider only the subsets of
feasible boundary values, Fi ⊂ Ti, defined to contain those instances for which at
least one combination s ∈ S produces a feasible solution. Now the performance
ratio rp,s associated with tp,s is

rp,s :=
tp,s

min{tp,s′ : s′ ∈ S}
∈ [1,∞).

Moreover, we set rp,s = rM := max{rp′,s′ : p′ ∈ Fi, s′ ∈ Si} for those instances p
that cannot be solved by s. The performance profile is finally given by

ρs(τ) :=
1

|Fi|
|{p ∈ Fi : rp,s ≤ τ}| ∈ [0, 1].
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Table 4. GasLib-582 test set: numbers of false infeasibility reports and
solver failures (top: solver does not find a feasible solution with any model,
bottom: no solver finds a feasible solution with any variant of given model)

BARON SCIP KNITRO Ipopt CONOPT4
0 7 7 7 8

MINLP EBR ABR EUR AEUR AUR
7 1 0 0 2 5

5.3. The GasLib-582 Test Set. The set F1 contains 48 instances of T1, hence 36
of the 84 instances are infeasible. The computing times are up to 62 s in cases where
solutions are found and up to 59 s in cases where a solver detects infeasibility. Some
of the instances are solved in fractions of a second. This can happen, for instance,
in the preprocessing of BARON due to bound strengthening. As one would expect,
the largest differences of computing times are observed for the global solvers.

First we discuss the objective values that are obtained by the different formulations
and solvers. In theory, the global solvers BARON and SCIP should produce identical
objective values whereas the local optima found by the local solvers can be larger by
arbitrary amounts. However, our results show that the values of BARON and SCIP
differ in some cases and that all model formulations and solvers produce almost
identical values on the current test set.

For every problem p ∈ F1, we compute the minimum and maximum objective
values f∗p,min and f∗p,max as well as the maximal absolute gap g∗p = f∗p,max − f∗p,min.
The minimal values f∗p,min range from 0 to 0.008 735 (operating cost in e/s), with
maximal gaps ranging from 0 to 0.008 765. The average maximal gap over p ∈ F1 is
approximately 0.0012, but most of the individual gaps are actually zero. We assume
that differing objective values are mainly caused by different numerical properties
of the solvers. We also compared the discrete states of the compressor stations
in the optimal solutions for every instance. Different active states are found for 9
of the 48 feasible instances, 3 of which have boundary values of the form Q0 = 0
and pu = pv, where the bypass mode and the closed mode are both feasible and
globally optimal with zero cost. The remaining 6 instances have different active
configurations. Thus, we have the surprising observation that on the current test
set the local solvers always yield optimal values close to the global minima.

Next, we turn to the issue of infeasibility detection. A substantial fraction of
the boundary values of our test set are infeasible: 36 out of 84. In theory, if a
global solver detects infeasibility of an instance, this is considered as an infeasibility
proof. However, due to numerical inaccuracy, this is not always true in practice.
To give a more detailed overview, we also list the numbers of feasible instances
that are not solved (i.e., infeasibility is reported or the solver simply fails) in
Table 4. Among the solvers, BARON clearly shows the most reliable results: for
every feasible instance there is at least one model formulation for which BARON
produces a solution. All other solvers report false infeasible results or fail in 7 or
8 cases. Surprisingly, this is also true for the global solver SCIP. Regarding the
different continuous reformulations, the approximate bivariate and exact univariate
reformulations are solved for every feasible instance (at least by one solver). The
worst result is obtained for the MINLP model (7 failures). However, this result
has to be carefully interpreted because the MINLP is handled by only 3 solvers
whereas all 5 solvers can handle the continuous reformulations. Within the set
of reformulations, the approximate univariate reformulation has by far the largest
number of false infeasibility reports and solver failures.
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Table 5. GasLib-582 test set: fastest solvers for every combination of
MINLP model or continuous reformulation with indicator constraint type
and pseudo NCP function (BP: bilinear product)

Model big-M/φFB big-M/φprod BP/φFB BP/φprod
MINLP BARON BARON
Exact bivar. reform. BARON BARON BARON BARON
Approx. bivar. reform. KNITRO BARON BARON BARON
Exact univar. reform. BARON BARON BARON BARON
Alt. exact univar. reform. Ipopt BARON BARON CONOPT4
Approx. univar. reform. BARON BARON BARON CONOPT4

Let us now investigate the performance (measured in computing time) of all
combinations s ∈ S. We define the fastest combination to be the one that has the
largest number of instances that it solves at least as fast as all other combinations, i.e.,
the combination s with the largest value ρs(0) in the corresponding logarithmically
scaled performance profile. We use this value because it is a generally accepted
quality measure. Of course, one might also be interested in other measures such as the
total runtime of a model/solver combination s on all instances. The solution quality
(objective value) does not play a role here. To give a visual illustration, we need
some aggregation and compare the 106 combinations in two stages: in the first stage
we determine the best combination of a solver with indicator constraint type and
pseudo NCP function for each of the 6 basic models: MINLP and 5 reformulations.
In the second stage, only the 6 best combinations of the first stage are compared.
Table 5 lists the fastest solvers for the MINLP model and the 5 reformulations. The
solver printed in bold is the fastest solver of the entire row, i.e., over all combinations
of indicator constraint types and pseudo NCP functions. Note that the MINLP
model does not involve any pseudo NCP functions, hence the first row has only two
entries (big-M and BP).

First, it can be seen that the global solver BARON is the fastest solver for 18
of the 22 model formulations. The local solvers Ipopt or CONOPT4 are faster in
only three cases. CONOPT4 is the overall fastest solver for the alternative exact
and approximate univariate reformulations. Second, it is apparent that the bilinear
product used as pseudo NCP function yields clearly faster runs than the Fischer–
Burmeister function: all the bold model/solver combinations use the bilinear product.
Third, a best choice of the type of indicator constraints (big-M vs. bilinear product)
is not apparent by this criterion. The full data set actually shows that the choice
does not have a significant impact here.

Figure 5 shows the 6 performance profiles of the fastest model/solver combinations
(bold) for each row of Table 5. Although BARON is faster than all other solvers
on the largest number of model formulations, it turns out that the preferable
model/solver combination does not use BARON. In order to determine the overall
fastest combination, we again compare the values ρs(0). It can be seen that the
local solver CONOPT4 (applied to the alternative exact and approximate univariate
reformulations) produces the shortest solution times for approximately 40% of all
feasible instances. Notice that both formulations solved with CONOPT4 are faster
than all other combinations if an instance can be solved by CONOPT4 at all (the
“horizontal” lines of the performance profiles of AEUR and AUR in Fig. 5 extend
almost to the left boundary). This is to be expected since local solvers typically
tend to be faster than global solvers. The global solver BARON applied to the other
continuous reformulations yields significantly slower solution times and is the fastest
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Figure 5. GasLib-582 test set: comparison of fastest combinations of
indicator constraint type, pseudo NCP function, and solver for MINLP and
continuous reformulations; cf. Table 5

Table 6. GasLib-582 test set: most robust solvers for every combination of
MINLP model or continuous reformulation with indicator constraint type
and pseudo NCP function (BP: bilinear product)

Model big-M/φFB big-M/φprod BP/φFB BP/φprod
MINLP BARON SCIP
Exact bivar. reform. BARON BARON BARON BARON
Approx. bivar. reform. BARON BARON BARON BARON
Exact univar. reform. BARON BARON BARON BARON
Alt. exact univar. reform. BARON BARON BARON BARON
Approx. univar. reform. BARON BARON BARON BARON

combination for 15% to 25% of the feasible instances. Finally, BARON applied to
the original MINLP model is distinctly the slowest combination of solver and model
formulation.

We now turn to robustness. The most robust combination is defined as the one
that solves the largest fraction of instances to optimality, i.e., the combination s
with the largest value

ρ∗s := lim
τ↗rM

ρs(τ).

As in the performance comparison, we list the most robust solver for every combina-
tion of model reformulation, indicator constraint type, and pseudo NCP function
in Table 6. Here BARON appears even more often than in the case of computing
times: It is always the most robust solver, except for the single case where SCIP
is applied to the MINLP model with bilinear products as indicator constraints. In
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Figure 6. GasLib-582 test set: comparison of most robust combinations of
indicator constraint type, pseudo NCP function, and solver for MINLP and
continuous reformulations; cf. Table 6

contrast to the case of computing times, the choice of indicator constraints does not
seem to have a significant impact here.

Again we compare the 6 performance profiles of the best combinations (bold) for
each row of Table 6, see Fig. 6. Overall, the results look more “homogeneous” than
in Fig. 5. All combinations produce comparatively good values ρ∗s from 85% to
98% of solved instances. The two bivariate reformulations produce the best values
(significantly above 90%). Note further that these model formulations use big-M
indicator constraints. The good robustness is probably caused by the convexity
conserving property of the big-M formulation, which contrasts with the inherently
nonconvex bilinear products.

5.4. The HG Test Set. The set F2 contains 41 instances of T2, hence 43 of the
84 instances are infeasible. The computing times are up to 67 s in cases where
solutions are found and up to 45 s in cases where a solver detects infeasibility.

The minimal objective values (in e/s) now range from 0 to 0.069 505 and the
maximal gaps from 0 to 0.022 102. The average maximal gap over all p ∈ F2

is significantly smaller than for F1 at approximately 0.000 677 8 and most of the
individual gaps are again zero. Except for one case, the active states in the optimal
solutions for a given set of boundary values are identical for all s ∈ S or consist of
different sets of identical compressor units yielding the same objective value.2 The
exceptional case is exactly the one leading to the maximal gap. Excluding this case
reduces the maximal gap over all instances by one order of magnitude.

2The detection of mathematical symmetry in this situation could be used to reduce the
complexity of the corresponding station model.
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Table 7. HG test set: numbers of false infeasibility reports and solver
failures (top: solver does not find a feasible solution with any model, bottom:
no solver finds a feasible solution with any variant of given model)

BARON SCIP KNITRO Ipopt CONOPT4
1 3 2 8 5

MINLP EBR ABR EUR AEUR AUR
3 2 2 2 2 4

Table 8. HG test set: fastest solvers for every combination of MINLP
model or continuous reformulation with indicator constraint type and pseudo
NCP function (BP: bilinear product)

Model big-M/φFB big-M/φprod BP/φFB BP/φprod
MINLP KNITRO BARON
Exact bivar. reform. BARON CONOPT4 CONOPT4 BARON
Approx. bivar. reform. BARON CONOPT4 Ipopt Ipopt
Exact univar. reform. KNITRO BARON Ipopt Ipopt
Alt. exact univar. reform. Ipopt SCIP Ipopt CONOPT4
Approx. univar. reform. BARON SCIP Ipopt CONOPT4

In Table 7 we list the numbers of feasible instances for which a model could not
be solved to optimality (i.e., infeasibility is reported or the solver fails). As it was
the case for the GasLib-582 station, BARON yields the smallest number of false
infeasibility reports (just one). Moreover, the choice of the class of solver (global vs.
local) seems to be more crucial than the choice of the specific model formulation:
the MINLP solvers report false infeasibility in 1 to 3 cases whereas the local solvers
have significantly larger numbers of failure of 5 and 8.

Turning to the performance investigation, we follow the same two-stage approach
as before. Table 8 lists the fastest solvers for the MINLP model and all tested
continuous reformulations. It can be seen that BARON is the fastest solver for the
MINLP model (to which only global solvers can be applied) and that local solvers
(CONOPT4 and Ipopt) are the fastest for all continuous reformulations, where both
global and local solvers are applied. This is in line with our expectations since local
solvers typically tend to be faster than global solvers. Moreover, it is noticeable that
the pseudo NCP function φprod yields better results than the Fischer–Burmeister
function φFB, and that global solvers outperform local solvers when applied to
big-M indicator constraints while the converse behavior is observed for bilinear
indicator constraints (except for the case of BARON applied to the exact bivariate
reformulation using bilinear indicator constraints and φ = φprod).

Figure 7 shows the performance profiles for every bold combination of Table 8.
The approximate bivariate reformulation (ABR) solved with CONOPT4 is the
overall fastest combination, performing best on more than 30% of all instances.
The approximate univariate (AUR), exact bivariate (EBR) and alternative exact
univariate (AEUR) reformulations combined with CONOPT4 come next, each
performing best on roughly 20% of all instances. Since the approximate univariate
formulation shows better results than EBR and AEUR for small values τ > 0, we
may summarize that the approximate reformulations (combined with φ = φprod)
tend to be the fastest combinations. A possible reason might be that for local
solvers the enlarged feasible set is preferable to the feasible sets of lower dimension
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Figure 7. HG test set: comparison of fastest combinations of indicator
constraint type, pseudo NCP function, and solver for MINLP and continuous
reformulations; cf. Table 8

of the exact reformulations. In addition, the overall preferable approximate bivariate
scheme is also the “most regular” formulation with respect to the LICQ (cf. Sect. 4.2).
Finally we note that both the exact univariate reformulation and the MINLP model
cannot compete with the other reformulations.

Regarding robustness, the situation changes completely. We list the most robust
solver (the one with largest ρ∗s) for every combination of model reformulation,
indicator constraint type, and pseudo NCP function in Table 9. For the original
MINLP model, KNITRO (with big-M indicator constraints) and SCIP (with bilinear
indicator constraints) are equally robust. BARON is the most robust solver in
80% of all continuous reformulations. The bilinear product indicator constraints
always yield better results than the big-M ones. Except for KNITRO applied to
the approximate univariate reformulation using bilinear indicator constraints and
φ = φFB, no local solver is more robust than one of the global solvers.

The performance profiles of the most robust combinations of Table 9 are given in
Fig. 8. All models yield comparable results, solving 85% to 93% of all instances.
The highest percentages are obtained by the original MINLP and the exact bivariate
reformulation (EBR). The fastest continuous reformulations, i.e., the approximate
bivariate and the alternative approximate univariate reformulation, yield the smallest
values at approximately 85%. Thus, we have exactly the opposite situation as for
the performance comparison.

5.5. Summary. The first main result is that local solvers applied to continuous
reformulations tend be faster than global solvers applied to the mixed-integer
model and its continuous reformulations. This was to be expected. Moreover,
our numerical results suggest that this tendency becomes more evident for larger
instances. When comparing only the continuous reformulations, the results on the
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Table 9. HG test set: most robust solvers for every combination of MINLP
model or continuous reformulation with indicator constraint type and pseudo
NCP function (BP: bilinear product)

Model big-M/φFB big-M/φprod BP/φFB BP/φprod
MINLP KNITRO SCIP
Exact bivar. reform. BARON BARON BARON BARON
Approx. bivar. reform. BARON BARON BARON BARON
Exact univar. reform. BARON SCIP BARON BARON
Alt. exact univar. reform. BARON SCIP BARON BARON
Approx. univar. reform. BARON SCIP KNITRO BARON
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Figure 8. HG test set: comparison of most robust combinations of indicator
constraint type, pseudo NCP function, and solver for MINLP and continuous
reformulations; cf. Table 9

larger test set indicate that the larger feasible sets of the approximate reformulations
are favorable and that the regularity of the formulation has a strong connection to
the performance of the solution process. (Recall that the “most regular” approximate
bivariate reformulation leads to the fastest solution times for the large test set.)
On the contrary, global solvers (especially BARON) lead to more robust results,
independent of the choice of model formulation.

When the decision is made which solver should be used, this also indicates a good
choice for the type of indicator constraints. Especially for larger instances, global
solvers tend to be faster on big-M formulations and local solvers lead to better
results when bilinear products are used. We think that the reason for this effect is
that the behaviour of global solvers is stronger influenced by an increased amount
of nonconvexity than it is the case for local solvers. This changes if the focus lies on
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robustness of the solution process, where the bilinear indicator constraint is clearly
preferable over the big-M formulation.

The second result is about the type of pseudo NCP functions: The product
formulation φprod distinctly outperforms Fischer–Burmeister functions. Although
the latter are quite prominent in the literature, the simple formulation using products
usually leads to faster and more robust formulations in practice.

Finally, we can state that—at least for the models under consideration in this
paper—there are no significant drawbacks concerning the quality of solutions when
local solvers are used. However, this might change if the fixed boundary values are
replaced by feasible ranges.

6. Conclusion

In this article we have presented MINLP and GDP models for cost optimization
and feasibility testing of gas compressor stations. Moreover, we have considered
different types of continuous reformulation techniques from the literature and applied
them to the application problem. Our computational study shows that local solvers
applied to continuous reformulations can be used to replace MINLP formulations
that can only be tackled by global solvers. The continuous reformulations yield
comparably robust results, optimal values of almost the same quality and tend to be
solvable within shorter solution times. Together with the publications [25, 37, 41],
this article provides a complete continuous reformulation of the discrete-continuous
problem of stationary gas transport optimization.

However, some questions remain open. We have considered a stationary and
isothermal variant of the problem of compressor station optimization. Since including
gas temperature as a dynamic variable mainly leads to increased nonlinearity and
nonconvexity in the model, we expect that continuous reformulations tend to be
even more favorable for these models. In contrast, the consideration of the transient
case will also increase the amount of discrete aspects so that it is unclear, which
formulation will be favorable in this case.
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