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Abstract. Due to strict regulatory rules in combination with complex non-
linear physics, major gas network operators in Germany and Europe face hard
planning problems that call for optimization. In part 1 of this paper we have
developed a suitable model hierarchy for that purpose. Here we consider the
more practical aspects of modeling. We validate individual model components
against a trusted simulation tool, give a structural overview of the model hier-
archy, and use its large variety of approximations to devise robust and efficient
solution techniques. An extensive computational study demonstrates the suit-
ability of our models and techniques for application in gas network planning.

1. Introduction

In part one of this paper [18] we have presented detailed models for station-
ary optimization in gas transport networks, consisting of physical components that
are mostly associated with network wide gas dynamics, and of technical compo-
nents that are usually associated with specific types of network elements. We have
also developed smoothing techniques for nonsmooth components in order to apply
optimization algorithms that use first and second order derivatives, and we have
presented simplifications and approximations of highly complex components to re-
duce the computational effort when a lower accuracy is acceptable. This leads to
a complicated variety of possible combinations of the component models. In this
paper we will first provide a structural overview of the possible combinations in
Sect. 2. The individual components will then be checked for correctness and accu-
racy in Sect. 3 by comparing computational results with the results of a commercial
gas network simulation software. In Sect. 4 we consider general optimization tech-
niques for computing practically useful and reliable results efficiently. This includes
penalty relaxations to obtain additional information when no feasible solutions can
be found, and using the variety of simplified and approximated models to construct
sequences of warm-started NLPs for tackling highly detailed and nonsmooth prob-
lems. Results will be presented in Sect. 5 for a set of hard problem instances on a
real-world network, and for a large set of publicly available instances on an artificial
but realistic network. An extensive literature review has already been given in part
one [18]; a broader review can be found in [9].

In the following subsection we introduce a fundamental application problem that
will be referred to throughout the paper.

1.1. Validation of Nominations (NoVa). The validation of nominations is one
of the key problems in the day-to-day work of gas network planners. In a nutshell,
the NoVa problem is this:
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Figure 1. Model aspect graph of resistors (non-isothermal)

Given a transport network and a nomination of all entry and exit
load flows, determine whether there is a technically and physically
feasible operation of the network that satisfies this nomination.

The details are as follows. Consider a set of booking contracts with entry and exit
customers. The booked capacities define maximal load flows that the customers
may nominate for actual transport. Now, a nomination is defined as a complete
set of balanced entry and exit load flows together with specific restrictions on gas
pressures and with prescribed values for all quality parameters of the supplied gas,
like calorific value, etc. The problem of validating such a nomination is to decide
whether it is technically and physically feasible, i.e., whether all load flows can be
realized. Throughout the paper we only consider the continuous feasibility problem
that is obtained after fixing all discrete decisions. For more information on the NoVa
problem and on our overall solution approach see, e.g., [9, 16].

2. NLP Model Variants

In part one of this paper [18], we have presented component models for the
required element types of gas networks and for basic physical phenomena that are
relevant to the entire network. The component models often consist of several
sub-models describing different physical phenomena or technical processes that we
refer to as model aspects, and many of these aspects admit a choice among several
modeling variants that we refer to as model concretizations. This leads to a large
variety of possible NLP models, each of which is determined by choosing a complete
set of concretizations for all model aspects.

In this section we provide a structural description of the sets of component mod-
els, aspects and concretizations, to obtain an overview and better understanding of
the complete set of NLP models and their interrelations. This is complicated by the
fact that the selection of concretizations for certain global aspects determines the
sets of choices of other aspects, whereas the remaining selections are mostly inde-
pendent of each other, even for different network elements of the same type. We will
arrange aspects and concretizations in a directed (meta-)graph to formalize these
interdependencies, so that every possible NLP model will ultimately correspond to
a forest in the meta-graph: a set of trees that satisfy certain properties.
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To this end, let us first give an overview of the component models and some
illustrative examples of model aspects and concretizations. The basic physical phe-
nomena include: gas compressibility, the equation of state for real gas, the heat
capacity of gas, the interdependence of changes in gas pressure and temperature
(Joule–Thomson effect), and mixing of different gas compositions. The required
element types include: nodes (entries, exits, junctions), passive arcs (pipes, resis-
tors, short cuts), and active arcs (compressor groups, control valve stations, valves).
Typical model aspects are the pressure drop along a pipe, the fuel consumption of a
compressor, or the equation of state. For instance, the aspect “equation of state” has
two concretizations, “thermodynamical standard equation” and “Redlich–Kwong”.
The former depends on another model aspect, “compressibility”, which in turn has
two concretizations, “AGA” and “Papay”; see Figs. 1–2. Here we consider only
the concretizations that we use in our NLP models, with details given in part one;
further variants can be added as needed.

There are two global aspects whose concretizations determine sets of choices of
other aspects: gas temperature and gas composition, the latter being represented
by seven gas quality parameters. In a coarse model we may fix the values of gas tem-
perature and gas quality parameters globally, but if we decide to take into account
changes at some network elements, then we must compute changes throughout the
network. This is the case since both temperature and composition are globally
coupled: fixing certain values at some network elements and computing changes at
other elements would inevitably lead to model inconsistencies. Taking the changes
into account is known as temperature tracking and gas quality tracking, respectively.
Practitioners tend to use it only when necessary as it complicates the models and
computations considerably. Note finally that the seven gas quality parameters (mo-
lar mass m, calorific value Hc, pseudocritical pressure and temperature pc,Tc and
the coefficients of isobaric molar heat capacity A,B,C) consist of four independent
subsets that can be selected for tracking individually, namely m, Hc, (pc,Tc) and
(A,B,C). Tracking has to be enabled if at least one subset is selected, but only the
selected subsets appear in the required mixing equations. The two global aspects
thus have 25 concretizations arising as combinations of “fixed” or “tracking” for the
temperature and the four parameter groups.

Next, we start describing the above-mentioned meta-graph to formalize rela-
tions between model aspects and concretizations. As before, let the directed graph
G = (V,A) model the gas network with node set V and arc set A. We denote model
aspect nodes of the meta-graph by α ∈ A and concretization nodes by γ ∈ C; their
union A ∪ C defines the node set of the meta-graph. An arc a = αγ from α to γ
exists iff γ is a concretization of the model aspect α. These arcs in the set A×C are
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Figure 3. Model aspect graph of compressors (nonisothermal)

called “can-be-modeled-by”-arcs. For instance, there is an arc from the model aspect
node α = “equation of state” to the concretization node γ = “Redlich–Kwong”. In
addition, the meta-graph also contains arcs from the set C×A. These occur for con-
cretizations that depend on other model aspects. For instance, the concretization
“thermodynamical standard equation” depends on the sub-aspect “compressibility”
(with concretizations “AGA” and “Papay”). We refer to these arcs in the set C ×A
as “contains-aspect”-arcs. In contrast, there are no arcs in C × C or in A × A
since concretizations do not need to be concretized further and there is no need
to consider aspects containing sub-aspects. (For instance, considering the specific
change in adiabatic enthalpy Had as an aspect with sub-aspects “compressibility”
and “isentropic exponent” would be physically reasonable but would unnecessarily
complicate the meta-graph, cf. Figs. 3–4). Thus, every aspect has at least one con-
cretization and every concretization belongs to some aspect, implying that aspect
nodes always have nonzero outdegree and concretization nodes always have nonzero
indegree. We define fundamental model aspects as aspects with indegree zero, and
terminal concretizations as concretizations with outdegree zero. Those form the
respective sets Ā := {α ∈ A : |δ−α | = 0} and C̄ := {γ ∈ C : |δ+

γ | = 0}.
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Figure 4. Model aspect graph of compressors (isothermal)

In contrast to the two global model aspects, gas temperature and gas composi-
tion, we call all other model aspects local. The selection of concretizations of local
aspects does not influence the sets of choices of other local aspects (except for sub-
aspects of the concretizations, of course), and the selections are independent for all
individual network elements. For instance, we may choose to concretize the com-
pressibility factor model with the AGA formula at pipes in regional (low-pressure)
sub-networks but choose to model the compressibility factor with the Papay formula
on large (high-pressure) transport pipelines. Similar considerations may apply to
the choice between “approximation” or “discretization” of the governing ODEs for
pipes. We thus speak of global and local selections of concretizations.

To select a specific NLP model variant, we first have to fix the global selections
and subsequently the local selections for all nodes and arcs of the network graph.
Let us denote the global selections by σg ∈ Σg where Σg is the (finite) set of
global choices. Then, for every network element ` ∈ V ∪ A, the global selections
σg determine a local model aspect graph M`(σg) describing all possible aspects,
concretizations and sub-aspects of `; see, e.g., Figs. 1–4 for the local model aspect
graphs of resistors and compressors. Fixing the local selections for ` means that,
for every fundamental aspect node ᾱ inM`(σg), we select a tree T`,ᾱ rooted in ᾱ
such that every aspect node α in T`,ᾱ has outdegree one (select one concretization
of α) whereas every concretization node γ in T`,ᾱ has the same outdegree as in
M`(σg) (cover every sub-aspect of γ). Obtaining trees here requires that identical
aspects reached from several concretizations are separate nodes inM`(σg), such as
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“compressibility” in Figs. 1, 3, and 4. ThusM`(σg) is actually a forest, and every
tree T`,ᾱ is a subtree of the tree rooted in ᾱ. On the other hand, we always select
identical concretizations for every instance of a “multiple” aspect, and we do not
see any good reason to do otherwise. (Therefore we depict every such aspect as a
single node with a visual indication of its multiplicity.) Now, the union

⋃
ᾱ T`,ᾱ is

a forest in M`(σg) representing a specific local model selection. We denote those
local selections by σ` ∈ Σ`(σg) where Σ`(σg) is the set of choices (local forests) at
element ` determined by σg. Given network elements `1, `2 of the same type, the
local model aspect graphsM`1(σg),M`2(σg) are clearly identical whereas the local
selections σ`1 ,σ`2 may differ. A formal definition of the complete set of possible
selections (or NLP model variants) thus reads

Σ :=
⋃

σg∈Σg

[
{σg} ×

∏
`∈V∪A

Σ`(σg)
]

.

The elements of Σ will be denoted by σ = (σg,σV∪A) with σV∪A = (σ`)`∈V∪A;
each corresponds to a forest in the meta-graph constructed as a union of local
forests. The respective subsets of global concretizations and of local concretizations
at element ` ∈ V ∪ A selected by σg and σ` will be denoted by Cg, C`.

With a selection σ ∈ Σ at hand, we can now formulate the corresponding NLP
model variant of the complete network. To this end, let Ēg, Īg and Ē`, Ī` denote
complete index sets of equality and inequality constraints that may appear in con-
cretizations of the global aspects and of the aspects of element ` ∈ V ∪ A, respec-
tively. Likewise, let V̄g, V̄` denote the respective index sets of variables that appear
in these concretizations. Here we require that corresponding constraint index sets
of different elements `1, `2 ∈ V∪A are mutually disjoint, even if `1, `2 are elements
of the same type,

Ē`1 ∩ Ē`2 = ∅, Ī`1 ∩ Ī`2 = ∅.
In addition, we require that every local variable index is associated with a unique
network element `. This is possible since variables of arc ` ∈ A can only appear
in the constraints of arc ` and of its head and tail nodes whereas variables of node
` ∈ V can only appear in the constraints of node ` and of its incident arcs. Thus
we obtain the following complete sets of constraints and variables that may appear
in the NLP model:

Ē = Ēg ∪
⋃

`∈V∪A
Ē`, Ī = Īg ∪

⋃
`∈V∪A

Ī`, V̄ = V̄g ∪
⋃

`∈V∪A
V̄`.

Now, every model selection σ determines certain global and local index subsets
corresponding to the constraints and variables of the concretizations Cg, C`,
Eσg ⊆ Ēg, Eσ` ⊆ Ē`, Iσg ⊆ Īg, Iσ` ⊆ Ī`, Vσg ⊆ V̄g, Vσ` ⊆ V̄`.

The unions of these sets yield the complete index subsets associated with σ ∈ Σ,

Eσ = Eσg ∪
⋃

`∈V∪A
Eσ` , Iσ = Iσg ∪

⋃
`∈V∪A

Iσ` , Vσ = Vσg ∪
⋃

`∈V∪A
Vσ` .

The selected NLP variant finally reads

min
xσ

f(xσ) s.t. cEσ (xσ) = 0, cIσ (xσ) ≥ 0, (1)

where
xσ := (xi)i∈Vσ , cEσ := (ci)i∈Eσ , cIσ := (ci)i∈Iσ .

The objective function f , although not part of the model variant, is restricted by
its set of variables: it can be any smooth function that depends only on xσ.

We remark that some of the NLP model variants contain additional continuous
choices that we will not formalize here. Those appear in concretizations that involve
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smoothing techniques or discretizations of differential equations, with smoothing
parameters or grid parameters that vary in continuous sets. Examples of such
concretizations include “Darcy–Weisbach-type smoothed” for resistors (see Fig. 1),
or the concretization “discretization” of the model aspect “Momentum equation” for
pipes (see Fig. 29 in App. A).

Figs. 1–4 and Fig. 22–29 in App. A show the local model aspect graphs for
resistors, compressors, pipes, control valves and nodes. As already mentioned, the
given sets of concretizations correspond to the model variants developed in part one
of this paper [18]; further variants are conceivable and may be added as needed.

Let us finally remark that the occurrence of model aspects with several con-
cretizations is not restricted to the case of gas network optimization. Our experience
shows that other problems from engineering and physics share similar properties.
The framework formalized in this section can thus be used in other fields of applied
optimization as well.

3. Model Validation

For a proper validation of the model components developed in the first part of
this paper [18], one would ideally set up inverse problems to perform parameter
estimations based on measurements from a real gas network. Although possible in
principle, this is prohibitively expensive in practice. Instead, we validate our model
components against a commercial simulation software by a systematic comparison.
This is a natural approach since our industrial partners rely on the same simulation
software to check the results of the optimization methods.

For a stationary simulation, one generally has to prescribe a suitable set of quan-
tities so that the resulting system of nonlinear differential and algebraic equations
has a unique solution. In our case this includes discrete and continuous control
settings of active network elements, flows at all but one entry and exit nodes in
every connected component of the network, and in addition the pressure at one
node in every hydraulically connected area. The simulation problem is typically
solved by a Newton framework using numerical integrators. In practical planning
applications, the solution is then manually checked against inequality constraints
like pressure limits at nodes or the velocity limit on pipes.

Modern simulation methods can compute solutions with high accuracy. For
increased computational speed, some simulation tools offer model simplifications,
such as replacing heat dynamics by a constant temperature [23] or deactivating the
tracking of gas quality parameters like molar mass or calorific value.

To analyze the physical and technical accuracy of our NLP model components,
we now carry out a consistency test against the commercial gas network simulation
software SIMONE v5.73 [12, 19]. The relevant components are pipes, resistors,
control valves, and compressors: entries, exits, junctions, valves, and short cuts
have trivial models and are therefore excluded. For the comparison, each of the four
element types is tested with several technical and physical settings, and possibly
with several model variants. The variant offering the highest common level of detail
between the NLP model and SIMONE is always included in the test set. In specific,
we use a non-isothermal model of gas physics with gas mixing at nodes, discretized
ODEs for the gas flow in pipes, and maximally detailed models of compressors and
drives; see [18, Sect. 3] for the details of the NLP model.

When generating the test sets, we aim at choosing realistic parameters of network
elements. Ideally, we would like to use the elements of a real-world network for the
comparison, but due to limitations of the SIMONE API [13], some parameters can
only be entered manually via the graphical user interface, which is impractical for
our large number of tests. The test set of every network element type is therefore
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Table 1. Parameters for test cases of pipes

Quantity Tested values Unit

L 0.01, 0.1, 0.9, 46.0 km
D 150, 310, 405, 1185 mm
k 0.006, 0.02, 0.1, 0.5 mm
hout −500, 0, 500 m
pin 3.9, 15.3, 53.8, 74.4 bar
Tin 288.15, 298.15, 308.15, 318.15 K
Q0 50, 250, 500, 750 1000Nm3/h

designed as follows. For every technical parameter (except pipe inclination, which
cannot be set with the SIMONE API) we take four quantiles from the distribution
of values of a real-world gas network: the 10%, 35%, 65%, and 90% quantiles.
The gas network considered is the northern high-calorific network of our industry
partner Open Grid Europe1 (see Sect. 5 for more details of this network). All other
parameters of our test sets like pressure or flow values are suitably chosen from
typical ranges based on our experience. The Cartesian product of the resulting
sets of parameters then defines the test set. Excluding the lower and upper 10%
of parameter values helps to avoid unrealistic parameter combinations that would
otherwise distort the analysis. We also exclude those cases from the analysis where
SIMONE or the NLP solver do not converge or where SIMONE yields a solution
that violates the velocity limit on a pipe. The remaining successful cases will be
referred to as valid tests.

As measures of deviation for a physical or technical quantity x (such as pressure
or temperature) we will consider the absolute and relative deviations of x itself,

dabs(x) = |xNLP − xSim|, drel(x) =
|xNLP − xSim|
|xSim|

,

and, if applicable, the relative deviation of the change of x along a network arc,

drel(∆x), ∆x = xin − xout.

Here, xSim and xNLP denote the respective solution values of SIMONE and the NLP
model. To obtain a meaningful comparison, the component parameters are always
identical in the NLP and in SIMONE, similarly the transport situations (typically
defined by Q0, pin, Tin), and the model variants are selected to agree as well as
possible. To avoid that exceptional cases dominate the comparison, we will discuss
average deviations rather than maximum deviations.

3.1. Pipes. For the validation of pipes we select four model variants: the combina-
tions of two pressure loss models (quadratic approximation and ODE discretization)
with two models of the compressibility factor (AGA formula and Papay’s formula).
For each of these four variants, 12 288 test cases are obtained as combinations of the
parameters given in Table 1. The geodesic height of the inflow node is fixed at 0m,
so that 8192 physically possible test cases remain (with |hout| < L). The valid tests
are used to calculate average deviations of x ∈ {pout,Tout}. Here drel(∆x) is only
computed if the change ∆x is at least 1% of the inflow value, to avoid numerical
noise dominating in cases where the change is insignificant and hence the denomina-
tor ∆x becomes very small, which could bias the comparison substantially. Table 2
shows the resulting deviations. As expected, the deviations between the discretized
ODE model and SIMONE are smaller than in case of the quadratic approximation.

1https://www.open-grid-europe.com

https://www.open-grid-europe.com
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Table 2. Mean deviations of outflow pressure (pout, bar) and out-
flow temperature (Tout, K) of pipes

Model variant Valid tests Quantity dabs(x) drel(x) drel(∆x)

approximation, AGA 2419 pout 0.1090 0.0086 0.0581
approximation, Papay 2651 pout 0.1010 0.0094 0.0591

ODE, AGA 2658 pout 0.0462 0.0031 0.0323
ODE, Papay 2659 pout 0.0504 0.0033 0.0325

approximation, AGA 2419 Tout 1.1000 0.0038 0.1610
approximation, Papay 2651 Tout 1.0000 0.0035 0.1500

ODE, AGA 2658 Tout 0.2160 0.0007 0.0457
ODE, Papay 2659 Tout 0.1480 0.0005 0.0287

0

0.
8

1.
6

2.
4

3.
2 4

4.
8

5.
6

100

101

102

103

Pressure (bar)

Fr
eq

ue
nc

y

0

0.
8

1.
6

2.
4

3.
2 4

100

101

102

103

Temperature (K)

Figure 5. Logarithmic histograms of outflow pressure and tem-
perature for the model variants “ODE discretization” and “Papay’s
formula”

Note that SIMONE always applies an implicit integration over time for the Euler
equations of gas dynamics [10, 23]. In the stationary case, the PDE solution ap-
proaches the solution of the spatial ODE asymptotically, and SIMONE simply uses
a large time interval to obtain a highly accurate solution. Nevertheless, the abso-
lute deviation of pressure with the quadratic approximation is only about 0.1 bar,
which appears to be sufficiently small for practical purposes in mid- to long-term
planning tasks. Figure 5 shows logarithmically scaled histograms of the absolute
deviations of outflow pressure and temperature for the model using the discretized
ODE and Papay’s formula. For the outflow pressure the leftmost bin contains 2574
of 2659 samples (97%) and for outflow temperature the leftmost bin contains 2330
of 2659 samples (88%).

Let us now discuss a specific test instance in more detail. Figure 6 shows some
exemplary pressure profiles (outflow pressure vs. flow) of SIMONE and two NLP
model variants, each combined with Papay’s formula. As one would expect, the
outflow pressure deviations between the models grow with increasing pressure loss.
In fact, almost arbitrarily large deviations can be generated if the pipe parameters
and boundary values are chosen such that huge pressure losses result: for instance, a
gap of about 38.5 bar between SIMONE and the quadratic approximation is obtained
for the example in Table 3. In this (totally unrealistic) case, the pipe is rather long
and its inner wall is extremely rough.

Turning to the outflow temperatures in Figure 7, we observe that all three profiles
are roughly comparable but visibly different. An interesting aspect is the difference
between the NLP models based on approximation and ODE discretization. As can
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Figure 6. Outflow pressure profile of an exemplary pipe (L =
46 km,D = 1185mm, k = 0.006mm, s = 0.01, pin = 74.44 bar,
Tin = 318.15K and Tsoil = 284.15K) computed using Papay’s for-
mula in SIMONE v5.73 ( ), NLP with ODE discretization ( ),
and NLP with a quadratic approximation ( ). Figure on the
right is a zoom of the dashed frame in the left figure.
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Figure 7. Outflow temperature profile for the pipe of Fig. 6

Table 3. Extremal pipe example

Parameters Results

L = 46 km pout(SIMONE) = 4bar
D = 850mm pout(NLP, ODE discr.) = 30.6bar
k = 1mm pout(NLP, quadr. approx.) = 42.5 bar
s = 0.01
Q0 = 1944× 103 Nm3/h
pin = 199.1bar

be seen in Figure 7, the approximation model does not catch the convex curvature
at small flows. Nevertheless, the average absolute deviation of 1K (cf. Table 2)
lies within the range of data accuracy: environmental forecasts, soil temperatures,
and heat transfer coefficients of pipe walls are inherently inaccurate, and data
imprecision is likely to introduce larger errors than 1K.

Figure 7 also shows a strange behavior of SIMONE for flow values close to zero:
there is a sharp peak in the outflow temperature profile that cannot actually repre-
sent physical behavior. Therefore we tested the example of Figure 7 again with the
more recent software release SIMONE v5.83. This version appears to fix the problem
at small flows, see Figure 8 (right). However, both versions exhibit a discontinuity
of the outflow pressure at zero flow, see Figure 8 (left). Moreover, comparing both
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Figure 8. Differences between SIMONE v5.73 ( ) and SI-
MONE v5.83 ( ) versions for small flows

Table 4. Parameters for test cases of control valves

Quantity Tested values Unit

∆p 0, 5, 10 bar
pin 20, 40, 60 bar
Tin 283.15, 300.15, 318.15 K
Q0 500, 1000 1000Nm3/h

Table 5. Parameters for test cases of resistors. Resistors with a
linear pressure loss model are described by the pressure drop ξ and
those with a nonlinear (Darcy–Weisbach type) pressure loss model
are described by the drag factor ζ and the diameter D.

Quantity Tested values Unit

pin 20, 40, 60 bar
Tin 283.15, 300.15, 318.15 K
Q0 500, 1000 1000Nm3/h

ξ 2, 4, 6, 8, 10 bar

ζ 5, 20, 50, 70, 90 1
D 300, 525, 775, 1000 mm

versions at large flows in the example of Figure 8 yields deviations up to 1.5 bar
for outflow pressure and up to 0.93K for outflow temperature. These deviations
are larger than most of the deviations between the NLP model and SIMONE v5.73.
Thus, regarding temperature, the NLP model appears to match SIMONE as well
as the two versions of SIMONE match each other.

Finally, although the quadratic pressure loss approximation is a substantial sim-
plification of the PDE model solved by SIMONE, its results appear to be sufficiently
accurate for practical use in mid- to long-term planning tasks: the deviations dis-
cussed above are mostly smaller than data inaccuracies caused by uncertainty of
measurements and unknown network data. In any case, if higher physical accuracy
is required, the approximation model can easily be replaced by the ODE model.

3.2. Control Valves and Resistors. In order to obtain unique solutions for con-
trol valves and resistors, the values of inflow pressure, inflow temperature and flow
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Table 6. Outflow temperature deviations of control valves

Model variant Valid tests Quantity dabs(x) drel(x) drel(∆x)

AGA 54 Tout 0.7390 0.0025 0.3380
Papay 54 Tout 0.0938 0.0003 0.0409

Table 7. Outflow pressure and temperature deviations of resis-
tors: linear pressure loss model (above) and Darcy–Weisbach type
model (below)

Model variant Valid tests Quantity dabs(x) drel(x) drel(∆x)

AGA 90 Tout 0.8850 0.0030 0.3370
Papay 90 Tout 0.0983 0.0003 0.0357

AGA 317 pout 0.0060 0.0006 0.0013
Papay 318 pout 0.0083 0.0008 0.0018
AGA 317 Tout 0.6830 0.0024 0.3410
Papay 318 Tout 0.2280 0.0008 0.0740

Table 8. Parameters for test cases of piston and turbo compressors

Quantity Tested values Unit

∆p 10, 15, 20 bar
pin 45, 50, 55 bar
Tin 283.15, 300.15, 318.15 K
Q0 (piston compressors) 300, 400, 500 1000Nm3/h
Q0 (turbo compressors) 400, 500, 600 1000Nm3/h

are fixed, and in case of control valves also the pressure reduction. For the com-
pressibility factor we consider again both the AGA formula and Papay’s formula.
The temperature change in control valves and resistors is calculated by the same
model, [18, Eq. (100)], hence similar behavior is to be expected in the comparisons.
The definition of the test set is given in Tables 4 and 5 and the results can be seen
in Tables 6 and 7. In one respect they are similar to the case of pipes: Papay’s
formula yields very small deviations for the outflow temperature whereas the AGA
formula yields deviations up to 8 times as large. However, the absolute deviations
are always reasonably small at less than 1K.

For control valves and for resistors with a linear pressure loss model, the outflow
pressure depends linearly on the preset values by [18, Eq. (99)] and [18, Eq. (12)].
Thus the NLP model and SIMONE should agree almost within machine precision,
but actually the outflow pressures show an average absolute deviation of about
5× 10−5 bar. Since the NLP results can be shown to be correct, the deviation
possibly indicates an output precision of the SIMONE API of about 1× 10−4. The
precision of internal computations is not known for SIMONE.

For resistors with a Darcy–Weisbach type pressure loss model, the outflow pres-
sure is determined by the nonlinear equation [18, Eq. (13)]. Although all values in
this equation are given (except for the outflow pressure), we observe again small but
measurable deviations between the NLP and SIMONE. The mean absolute deviation
is 0.006 bar with the AGA formula and 0.008 bar with Papay’s formula.



OPTIMIZATION MODELS FOR GAS NETWORKS: VALIDATION & RESULTS. 13

Table 9. Results of the comparison of turbo compressors (above)
and piston compressors (below)

Compressibility factor Valid tests Quantity dabs(x) drel(x) drel(∆x)

AGA 444 Had 0.0729 0.0019 —
Papay 435 Had 0.0388 0.0010 —
AGA 444 P 0.0058 0.0009 —
Papay 435 P 0.0105 0.0016 —
AGA 444 Tout 0.6810 0.0021 0.0199
Papay 435 Tout 0.6200 0.0019 0.0188

AGA 513 Had 0.0721 0.0021 —
Papay 513 Had 0.0437 0.0012 —
AGA 513 P 0.0044 0.0014 —
Papay 513 P 0.0053 0.0017 —
AGA 513 Tout 0.6600 0.0021 0.0263
Papay 513 Tout 0.6060 0.0019 0.0243

3.3. Compressors. For the examination of turbo and piston compressors, we fix
the values of inflow pressure, inflow temperature, outflow pressure and flow (see
Table 8 for the specific values). The test set is constructed from 18 combinations
of physical models of the compressibility factor, the isentropic exponent and the
temperature rise equations, yielding 1458 test cases both for turbo and piston com-
pressors. We compare computed values of the specific change in adiabatic enthalpy
Had (kJ kg−1), required compressor power P (MW) and compressor outflow tem-
perature Tout (K).

Table 9 shows the results for turbo and piston compressors. Since Had and P
do not have inflow and outflow values, drel(∆x) does not exist for these quantities.
The results of the NLP model and SIMONE agree very well for the compressors: the
relative deviations drel(x) are no larger than 0.2%, and even the relative deviations
drel(∆x) with respect to the temperature change are just about 2%. A possible
reason for the remaining small temperature difference may lie in the model of the
isentropic exponent or in differences of the adiabatic efficiency. These two quantities
cannot be accessed with the SIMONE API and are therefore not compared.

3.4. Conclusion. Of course, one cannot expect that computational results of any
simulation software and of the NLP model agree with high precision. Differences in
numerical algorithms, discretizations and implementations make deviations almost
inevitable. In addition, it is likely that there are differences in data handling and
in the precision of data input and output. Obviously, these aspects may add to the
deviations caused by the numerical schemes.

As we have seen, it is difficult to validate our highly accurate NLP model against
a closed-source simulation package like SIMONE because the code of the latter
cannot be inspected. This is the reason why in certain cases we can only observe but
not analyze differences in the computational results. For instance, we have no clue
why the outflow temperatures of several network element types show unexpectedly
large deviations if we use the AGA formula for the compressibility factor, whereas
deviations are very small with Papay’s formula. A possible reason might be that the
correction term for the heat capacity [18, Eq. (38)] is handled in different ways. As
stated in part 1 of this paper, that term evaluates to zero with the AGA formula, so
the value is exact in our NLP model. However, it is possible that SIMONE evaluates
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the integral numerically rather than simply dropping it. Differences like those may
cause many of the unexplained deviations, but we have no way to tell.

In summary, the observed differences between the NLP model and SIMONE are
surprisingly small. Thus, we view the comparison presented above as a successful
validation of our model components for the intended use in optimization-based
mid-term to long-term planning in gas networks.

4. Optimization Techniques

This section addresses two types of techniques that are important when solving
the problem of validation of nominations in practice: penalty-based relaxations in
several standard and problem-specific variants and sequences of simplified NLPs
that are used to obtain a good initial estimate for the NLP of interest.

As it is the case for the framework of model aspect graphs in Sect. 2, the tech-
niques presented in this section are not restricted to the field of gas network opti-
mization but can also be applied to other problems from engineering or physics.

4.1. Penalty Formulations. Penalty formulations provide an essential tool for
the modeler as well as for the practitioner who uses optimization software to solve
real-world problems. For the modeler it is often difficult to find model errors or
inconsistencies, particularly if he or she is not also a practitioner or an expert in
the area of application. More importantly, the modeler (or practitioner) is often
troubled with erroneous, incomplete or inconsistent data. These data problems
may lead to infeasible instantiations of the optimization model and are typically
hard to detect. Sophisticated penalty formulations relax certain constraints of the
optimization model, thus giving a chance to detect the area of the transport network
in which a model or data problem may be located. For the practitioner, penalty
formulations are also very useful in situations where he or she is not only interested
in optimal solutions but also in other feasible solutions.

Furthermore, penalty formulations are often instrumental in speeding up the
solution process by finding an (almost) feasible solution first. It is usually easier
and faster to solve the original problem with such a near-feasible solution as initial
estimate than solving it from scratch (cf. Sect. 4.2).

In what follows, we present some penalty-based relaxation schemes that are
used in gas transport applications. The presented relaxation schemes will be used
in Sect. 4.2, and numerical results are finally given in Sect. 5.

4.1.1. Relaxation Schemes for Gas Network Optimization Models. Suppose that a
specific instantiation of interest of the model hierarchy presented in [18, Sect. 3] is
given in standard NLP form,

min
x

f(x) s.t. cE(x) = 0, cI(x) ≥ 0. (2)

Here and in what follows, E and I are the respective index sets of equality and in-
equality constraints. With slack variables s = (s+

E , s−E , s+
I ), the associated standard

`1 penalty model is then defined as

min
x,s
‖s‖1 s.t. cE(x) + s+

E − s
−
E = 0, cI(x) + s+

I ≥ 0, s ≥ 0. (3)

Likewise, the standard `∞ penalty model reads

min
x,s
‖s‖∞ s.t. cE(x) + s+

E − s
−
E = 0, cI(x) + s+

I ≥ 0, s ≥ 0. (4)

Both models are full relaxations of (2) and hence feasible by construction. The
`1 penalty model (3) is actually smooth since ‖s‖1 is just the sum of the components
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of s, while the `∞ penalty model is easily converted to an equivalent smooth formu-
lation by adding an extra variable z for ‖s‖∞ and inequality constraints z− si ≥ 0
for all components of s.

Minimizing the `1 norm has the well-known property that it tends to generate
sparse solutions, i.e., solutions with only a few nonzero entries in s (see [4, 22] and
the references therein). This property is very useful in detecting and analyzing
potential reasons of infeasibility.

Minimizing the `∞ norm is useful if one is interested in determining the smallest
possible upper bound on the constraint violations. In contrast to (3), solutions of
(4) tend to have the property that many components of s do not vanish but often
have significantly smaller values than the nonzero components of solutions to the
corresponding `1 penalty model.

These two basic relaxation types are now used to develop problem-specific re-
laxation schemes. In practice, one often does not wish to relax all constraints but
only certain classes. For instance, such a class may contain all pressure loss mod-
eling equations on pipes or all constraints modeling the borders of characteristic
diagrams of compressors. For handling selected classes of constraints, we introduce
the index setR ⊆ E∪I indicating which constraints are to be relaxed. The required
slack variables are s = (s+

E∩R, s−E∩R, s+
I∩R). With this notation, the partly relaxed

`1 penalty model is given by

min
x,s
‖s‖1 s.t. cE\R(x) = 0, cE∩R(x) + s+

E∩R − s
−
E∩R = 0,

cI\R(x) ≥ 0, cI∩R(x) + s+
I∩R ≥ 0, s ≥ 0.

(5)

The corresponding partly relaxed `∞ norm penalty model reads

min
x,s
‖s‖∞ s.t. cE\R(x) = 0, cE∩R(x) + s+

E∩R − s
−
E∩R = 0,

cI\R(x) ≥ 0, cI∩R(x) + s+
I∩R ≥ 0, s ≥ 0.

(6)

Note that these two relaxations are not necessarily feasible, except of course with
the choice R = E ∪ I where they become identical to the standard penalty models.

The partly relaxed penalty models (5) and (6) are of special interest in prac-
tice, because a suitable choice of the index set R may allow to detect reasons of
infeasibility. Of course, from the mathematical viewpoint, there is no such thing
as a “reason” of infeasibility: infeasibility is simply caused by a set of incompat-
ible constraints, and in general there may be a variety of possibilities to achieve
feasibility by relaxing different subsets of those constraints. In practice, however,
different constraints often have different relevance (depending on the specific sit-
uation). Then, if the violation of a lower-priority constraint makes the problem
otherwise feasible, that lower-priority constraint may be interpreted as “the reason”
of infeasibility, and a sufficiently small violation will be tolerated.

Suppose that a practitioner is confronted with an infeasible instance. If, say, a
relaxation of compressor group constraints leads to feasibility, the reason might be
that a lower pressure bound in a downstream part of the network is too tight. An-
other reason might be that the operating ranges of certain active compressor units
are not sufficiently large for generating an outflow pressure that satisfies the pres-
sure bounds in the downstream network. The opposite situation (too tight upper
pressure bounds) may be detected by relaxing control valve constraints that limit
the pressure decrease from below. Here, the “reason” depends on the interpretation
of the situation by the practitioner, who may decide that the pressure bounds or
the borders of the characteristic diagrams of the compressors are more important,
respectively. Another relaxation that is often used in practice is to relax the sup-
plied and discharged amounts of flow at entry and exit nodes. Given a solution to
this relaxed model with non-vanishing slack variables, the practitioner obtains the
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information of how much the contracts with one or more entry or exit customers
have to be modified in order to achieve a feasible flow situation.

Going further, it may be useful for practitioners to partition the index set R into
several mutually disjoint constraint classes Rk, k ∈ K,

R =
⋃
k∈K

Rk ⊆ E ∪ I,

and allow a specific maximum constraint violation s̄k for each constraint class under
consideration. Letting sk = (s+

E∩Rk , s−E∩Rk , s+
I∩Rk) and s = (sk)k∈K, this leads to

the modified `∞ feasibility problem

Find (x, s) s.t. cE\R(x) = 0, cE∩R(x) + s+
E∩R − s

−
E∩R = 0,

cI\R(x) ≥ 0, cI∩R(x) + s+
I∩R ≥ 0,

s ≥ 0, s̄k − ‖sk‖∞ ≥ 0 for k ∈ K.

(7)

This refined relaxation plays an important role in the presence of soft constraints
(see [9, Chap. 11] for a detailed discussion). For instance, the gas flow can excite
vibrations of the pipes, which in turn may generate undesired noise in populated
areas and, in serious cases, may even destroy the pipes. As there is no suitable
quantitative model for these phenomena, a simple speed limit for the gas flow often
serves as a crude practical measure to prevent vibrations. In this situation, the
network operator may formulate the goal that the speed bound should be satisfied
(v ≤ v+), although he will accept small violations if necessary. So he can define
the gas velocity constraints to be one of the sets Rk and can specify an additional
quantity s̄k that softens the former bound to v ≤ v+ + s̄k. Soft constraints like
these often play an important role in real-world problems and can be covered by
penalty reformulations like (7).

4.2. Sequential NLP Solving. As one might imagine, industrial users would
always like to use the most accurate available model. Unfortunately but naturally,
the most detailed and accurate model variants presented in [18, Sect. 3] are the
most nonlinear and nonconvex ones. In addition, some of them are nonsmooth,
i.e., the standard C2 assumption is violated unless one incorporates numerically
challenging smoothing techniques. All these facts illustrate that it is an ambitious
task to solve these models from scratch. Since it is impractical for industrial users
of optimization methods to adapt the model or to tune the parameters of the solver
for individual problem instances, there is a general need for numerically robust
solution techniques.

The model hierarchy presented in [18, Sect. 3] suggests a natural way to achieve
this goal. The large variety of NLP model variants allow us to set up sequences of
NLPs that can be solved successively. The key aspect is to arrange each sequence
in a way such that successive NLPs differ only slightly in terms of model size and
in increase of nonlinearity and nonconvexity, thus allowing for warm starts.

4.2.1. NLP Sequences. We consider finite sequences (NLPk), k ∈ N , that are chosen
from the family of NLPs given in (1). Recall that A is the set of all model aspects
where aspect α ∈ A has concretizations γα ∈ Cα. With this notation, we require
that a sequence of NLPs has increasing accuracy order, defined by

NLPk ≤ NLPk+1 :⇐⇒ γkα ≤ γk+1
α for all α ∈ A, k, k + 1 ∈ N .

Here, the notation “γkα ≤ γk+1
α ” means that the concretization γkα of model aspect α

used in NLPk is no more accurate than the concretization γk+1
α used in NLPk+1. The

notion of “more accurate” is not always defined in a strict mathematical sense (the
Papay formula is considered more accurate than the AGA formula, for instance),
but in any case we require that all variables of a model variant are also present in a
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“more accurate” variant. Thus, the numbers of NLP variables in a sequence satisfy
nk ≤ nk+1.

4.2.2. Increasing Robustness and Convergence Acceleration. When solving an NLP
sequence we make use of three key ideas that improve the solution process by
making it more robust and by accelerating convergence of the individual NLPs:

(1) In most of the sequences used in practice, at least the first NLP is a penalty
formulation of the target NLP that we actually want to solve; thus solving
the first NLP is analogous to phase 1 of the simplex method. The benefit
of this approach is twofold. First, solving a penalty model is much easier
than solving the original model in many cases, according to our experience.
Second, if a given instance is infeasible, the penalty formulation allows for
a better analysis of possible reasons (cf. Sect. 4.1). In view of this, similar
techniques have also been used in optimization for water networks [1].

(2) Nonsmooth model aspects appear primarily in the model of gas parameter
mixing, because flow directions in the network are initially unknown (cf.
[18, Eq. (9)]). When solving an NLP of the sequence that incorporates
mixing of gas parameters, we fix the flow directions on all network arcs
based on the solution of the previous NLP, as follows. Let qka ∈ [q−a , q+

a ]
denote the bounded flow variable of arc a in NLPk and let (qka)∗ denote
its optimal value in NLPk. The flow direction for NLPk+1 is then fixed by
setting properly restricted bounds,

qk+1
a ∈


R≥0 ∩ [q−a , q+

a ] , (qka)∗ > 0,

R≤0 ∩ [q−a , q+
a ] , (qka)∗ < 0,

{0}, (qka)∗ = 0.

(8)

Similar ideas can be used for other nonsmooth aspects, like (de-)activating
gas coolers [18, Eq. (68)] and preheaters [18, Eq. (103)]. It would be reason-
able to consider the optimal values of the dual variables of NLPk in order
to relax the third case in (8), yielding restricted bounds R≥0 ∩ [q−a , q+

a ] or
R≤0 ∩ [q−a , q+

a ] instead of fixing the flow to zero. We have not done this
in the current study because of the technical effort for accessing the dual
variables from many NLP codes with different interfaces that we used, and
because some solvers do not even provide dual variables.

(3) We initialize the variables of NLPk+1, xk+1 ∈ Rnk+1 , based on the optimal
solution of NLPk, (xk)∗ ∈ Rnk . This is done as follows. After some re-
ordering we can write xk+1 = (xk, x̃k+1) with x̃k+1 ∈ Rñ, ñ = nk+1 − nk.
The key idea is to fix the xk part at (xk)∗ and to determine x̃k+1 by simple
techniques so that ((xk)∗, x̃k+1) satisfies the constraints of NLPk+1 as well
as possible. For instance, consider a constraint c(xk, x̃k+1

i ) = 0 that can be
solved explicitly for the “new” variable x̃k+1

i in terms of the “old” variables,

0 = c(xk, x̃k+1
i ) ⇐⇒ x̃k+1

i = c̃(xk) =: x̃∗i .

In this case we initialize x̃k+1
i with x̃∗i . This technique is successively ap-

plied to new variables that depend on xk and already initialized components
x̃k+1
i . In other situations, we simply initialize the new variables with suit-

able constants.

4.2.3. Stopping Criterion. In the finite sequences considered thus far, NLP|N | is the
most accurate model that we attempt to solve. It is also possible to extend the
presented technique to infinite sequences of NLPs. For instance, one may wish to
increase the physical accuracy of the model of gas dynamics in pipes by discretizing
the ODEs on successively finer grids, which calls for a stopping criterion. Various
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criteria are possible, and a natural requirement is that they should be based on
changes in variables that exist in every member NLPk of the sequence. Meaningful
quantities of this type are pressures at nodes and mass flows on arcs of the network.
With the vectors

pkV := (pki )i∈V, qkA := (qka)a∈A,

and tolerances εp, εq > 0, a suitable stopping criterion is given by

‖pkV − pk−1
V ‖∞ < εp and ‖qkA − qk−1

A ‖∞ < εq. (9)

4.2.4. Specific NLP Sequences. In this section we give three examples of sequences
that are useful in gas network optimization. The first sequence mainly addresses the
nonsmoothness of the gas quality parameter mixing model given in [18, Sect. 3.3].
The second one deals with highly detailed modeling of gas dynamics in pipes and
the last one can be used in order to incorporate heat dynamics in the problem.
Computational results of the sequential NLP approach are presented in Sect. 5.
For all sequences, we assume that all discrete decisions are given.
An NLP Sequence for Gas Parameter Tracking. The finite sequence for gas quality
parameter tracking is informally defined as follows:
NLP1: Simple mass conservation model at nodes without gas parameter mixing [18,

Eq. (7)], isothermal quadratic approximation of gas dynamics in pipes [18,
Eq. (55)], full isothermal compressor group model with machine models
as described in [18, Sect. 3.4.10] and [18, Sect. 3.4.15], isothermal control
valve model [18, Eq. (99)], standard resistor, short cut and valve models,
arbitrary penalty formulation (see Sect. 4.1). Globally constant gas density
under normal conditions.

NLP2: Like NLP1 but with an extended node model incorporating mixing of molar
masses [18, Eq. (9)].

NLP3: Like NLP2 but with an extended node model incorporating mixing of calorific
values.

NLP4: Like NLP3 but with an extended node model incorporating mixing of pseu-
docritical pressures and temperatures.

NLP5: Like NLP4 but with gas density under normal conditions depending on the
quality parameters.

To obtain smooth formulations of the mixing models it is necessary to fix the flow
directions on all network arcs, as already discussed in the previous section.
An NLP Sequence for Highly Detailed Isothermal Gas Dynamics Modeling. In this
sequence the main focus is on highly detailed modeling of isothermal gas dynamics
in pipes. The sequence is given as follows:
NLP1: Identical to NLP1 in the sequence above.
NLP2: Like NLP1 but with the momentum equation discretized on initial grids ∆0

a

for all pipes a ∈ Api (cf. [18, Sect. 3.4.7]).
NLPk, k > 2: Like NLPk−1 but with the momentum equation discretized on refined

grids ∆k−2
a ⊃ ∆k−3

a for all pipes a ∈ Api.
The canonical stopping criterion for this infinite sequence is (9). To reduce the
numerical effort during iterative grid refinement (k > 2), one might also employ
an adaptive discretization scheme. Here adaptive means that the discretization on
pipe a = ij ∈ Api is only refined in NLPk if∥∥∥∥∥

(
pi
pj

)k
−
(
pi
pj

)k−1
∥∥∥∥∥
∞

> εp or |qka − qk−1
a | > εq. (10)

Of course, it is also possible to use pipe-specific tolerances, i.e., to replace εp and εq
in (10) by εp,a and εq,a.



OPTIMIZATION MODELS FOR GAS NETWORKS: VALIDATION & RESULTS. 19

An NLP Sequence for Temperature Dynamics Modeling. Here we incorporate all
temperature dynamics constraints in the model. The sequence is defined as follows:
NLP1: Identical to NLP1 in the sequences above.
NLP2: Like NLP1 but with an extended node model incorporating the mixing of

the coefficients A,B,C of the molar heat capacity of ideal gas.
NLP3: Like NLP2 but with non-isothermal models of all elements of the network

(including heat capacity models).
Notice that none of the three sequences above have a cost minimization objective:

all of them solve penalty-based relaxation models. However, all sequences can
readily be extended or modified to incorporate a cost minimization objective.

5. Computational Results

In order to show the practical relevance of our NLP models and solution tech-
niques on large-scale real-world networks, we now present an extensive computa-
tional study for the problem of validation of nominations (NoVa). A complete NoVa
model contains discrete aspects of controllable elements as well as detailed models of
gas dynamics and technical devices of the network. This combination leads to hard
mixed-integer nonlinear optimization (or feasibility) models that are intractable for
state-of-the-art general-purpose MINLP solvers on real-world network sizes. In the
research project ForNe we have developed custom solution approaches for NoVa.
The main idea is to split up the solution process into two stages. The first stage
solves a model containing all discrete aspects and simplified variants of the underly-
ing gas physics and technical network elements. Afterwards, the resulting discrete
controls are fixed throughout the network in order to obtain a purely continuous
and highly detailed NLP model that “validates” the fixed decisions. In this stage,
penalty formulations as described in Sect. 4.1 are used to prove feasibility (or ε-
feasibility) of the underlying MINLP, or to obtain information on possible reasons
of infeasibility otherwise. Here we use the sequential NLP (SNLP) approach for
solving NLP models with a high level of physical and technical accuracy.

This section deals with that second stage of the NoVa solution approach and
presents detailed numerical results for it. We will indeed see that the NoVa problem
is solvable even with high detail and accuracy, and that the SNLP approach is a
key tool for increasing robustness. Additional information concerning the outcomes
of the ForNe project and extensive computational studies of the overall approach
are given in [5, 14, 16] and in the book [9].

The remainder of this section is organized as follows. In Sect. 5.1 we present the
computational setup including the description of used modeling languages, solvers,
and other software and hardware issues. Section 5.2 then describes both the real-
world network and the publicly available academic network that we used in our
computational experiments. The following Sects. 5.3 and 5.4 present and discuss
the respective numerical results on the real-world and the academic test set. Finally,
Sect. 5.5 concludes with a discussion of the results.

5.1. Computational Setup. All models and algorithms are implemented using
the framework LaMaTTO++ for modeling and solving mixed-integer nonlinear op-
timization problems on networks [11]. The computational study of the NLP vali-
dation stage presented in this paper is run on a desktop PC with a six-core AMD
Opteron Processor 2435 with 2600MHz and 64G RAM. The operating system is
Debian 7.5 and the C++ code LaMaTTO++ is compiled using GCC 4.7.2. All
models are implemented in GAMS 24.1.3 [6, 17].

The computational results presented below are obtained using the NLP solver
CONOPT 3.15L, because it performs best on the given problem class according to
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Table 10. Elements of the HN network and the GasLib-582 network

HN GasLib-582

Element type Number Number

vertex 747 582

entry 30 31
exit 139 129
junction 578 422

arc 786 609

pipe 505 278
compressor group 8 5
control valve 27 23
valve 50 26
resistor 37 8
short cut 159 269

Table 11. Exit states of direct approach and of SNLP sequence
(HN test set, “parameter tracking”)

Exit state Direct SNLP

locally optimal 10 30
locally infeasible 19 0
intermediate nonoptimal 1 0

our experience gained during the ForNe project. The solvers we have tested include
Ipopt [21], CONOPT and CONOPT4 [3], KNITRO [2], SNOPT [8] and MINOS [15].

5.2. Test Instances. We evaluate and test our models on two different test sets
based on country-sized transport networks. The first test set, called HN, contains
30 difficult expert instances that arise at OGE. The corresponding network is the
northern high-calorific gas network of OGE. The second test set, called GasLib-582,
is publicly available [7] and is approximately of the same size as the HN network.
These two test sets appear under the same names in other publications as well.
Table 10 gives the numbers of elements of the two networks. In order to limit the
computational effort to a reasonable amount, we randomly chose 500 out of the 4227
GasLib-582 nominations that are freely available at http://gaslib.zib.de. The
first stage solvers of our NoVa approach obtained feasible solutions for 394 of the
500 random nominations. We perform the NLP validation on these 394 instances;
see Table 15 in App. C for the complete list.

The results on the HN test set will demonstrate the practicability of our NLP
models on hard instances that arise in the day-to-day work at german gas network
planning departments whereas the GasLib-582 test set provides publicly available
instances on which other researchers can test and compare their algorithms.

5.3. The HN Test Set. Here we present the computational results for the SNLP
sequences “parameter tracking”, “temperature dynamics” and “ODE discretization”
(see Sect. 4.2) applied to the expert instances on the HN test set, and compare them
with the direct approach, i.e., the attempt to solve the final NLP of each sequence
(the target NLP) from scratch. SNLP results are determined by the target NLP
(exit state, accuracy) or by the entire sequence (iteration count, computing time).

http://gaslib.zib.de
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Figure 9. Constraint violations of direct approach and of SNLP
sequence (HN test set, “parameter tracking”).
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Figure 10. Iteration counts and computing times (s) of direct
approach and of SNLP sequence (HN test set, “parameter track-
ing”)

5.3.1. Parameter Tracking Problem. Recall that we expect that solving a sequence
of NLPs while successively adding new gas parameters to the model leads to better
convergence than the direct approach. This is indeed the case, as can be seen in
Table 11: the exit states show that the direct approach solves only one third of all
instances to local optimality whereas the SNLP approach solves every instance.

Since the NoVa problem is a feasibility problem, our objective is to minimize the
constraint violation (using the relaxed NLP in Sect. 4.1). Figure 9 presents empir-
ical distribution functions of the respective objective values for the SNLP sequence
and the direct approach, giving for every constraint violation the percentage of in-
stances not exceeding that value. The plot clearly shows that the direct approach is
much less successful: it yields substantially larger constraint violations and in fact
many “false infeasibles”. Moreover, only for 2 out of the 30 instances, it computes
a zero constraint violation where the SNLP approach fails to do so.

Figure 10 shows the empirical distribution functions for total iteration counts and
computing times (i.e., accumulated over all NLPs in case of the SNLP sequence).
Despite the fact that the SNLP approach solves five NLPs rather than just one,
both approaches require roughly the same effort. While the SNLP approach needs a
slightly larger number of iterations than the direct approach, it does not possess as
extreme outliers as the latter. In summary, it can be clearly stated that the SNLP
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Figure 11. Iteration counts (left) and computing times (s, right)
of NLPs of the SNLP sequence (HN test set, “parameter tracking”)

Table 12. Exit states of direct approach and of SNLP sequence
(HN test set, “temperature dynamics”)

Exit state Direct SNLP

locally optimal 8 30
locally infeasible 6 0
intermediate nonoptimal 1 0
intermediate infeasible 15 0

approach is much more effective than the direct approach in producing feasible
solutions while the computational cost is comparable.

The above observations are confirmed by Fig. 11, which displays the distributions
of iteration counts and computing times of individual NLPs in the sequence over
the HN test set. Except for a few outliers, all iteration counts are below 100, which
is approximately 1/5 of the average iteration count of the direct approach. Outliers
above 100 are only present in the first, third and fifth NLP of the sequence. Possible
explanations are as follows. The first model does not contain any mixing aspects,
and the outliers thus may arise from “correcting” the continuous part of the solution
given by the first stage of the NoVa solution approach. The third NLP adds the
calorific value as a new gas quality parameter to the model. Since the HN test set
includes heat power bounds at the entries and exits (in addition to the mass flow
bounds), activating the tracking of the calorific value plays a crucial role for the
feasibility of the problem. Finally, the fifth and last NLP adds the gas density under
normal conditions as a variable to the model. Since this quantity occurs in many
constraints—especially in all flow conversion constraints—the worst-case difficulty
of the model increases, which might be the reason for outliers in SNLP iteration 5.
Turning to the computing times, we see that the majority are below 4 s, and we
observe a similar qualitative behavior as for the iteration counts.

Let us now consider some model statistics of the NLPs of the SNLP sequence.
In all NLPs the number of variables is only slightly larger than the number of
constraints: after fixing the discrete decisions only a few degrees of freedom remain,
resulting from continuous control variables of active network elements. Both the
numbers of variables and constraints strictly increase within the SNLP sequence,
lying between 5000 and 15 000. The number of non-constant entries and the total
number of entries in the constraints Jacobian also strictly increase, lying between
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Figure 12. Constraint violations of direct approach and of SNLP
sequence (HN test set, “temperature dynamics”)
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Figure 13. Iteration counts and computing times (s) of direct
approach and of SNLP sequence (HN test set, “temp. dynamics”)

10 000 and 20 000 and between 20 000 and 40 000, respectively. The fraction of
non-zero entries in the Jacobian is approximately 0.025%.

5.3.2. Temperature Dynamics Problem. The results for “temperature dynamics” are
similar to the results for “parameter tracking”. Again, the direct approach solves
only an unsatisfactory share of instances to local optimality (26.67%) whereas the
SNLP approach solves all instances (see Table 12). Moreover, the SNLP approach
reduces the constraint violation much stronger than the direct approach, as Fig. 12
clearly shows. Only two instances are solved with a smaller constraint violation by
the direct approach than by the SNLP approach. Furthermore, the SNLP approach
is substantially more efficient. Figure 13 compares iteration counts and computing
times using empirical distribution functions. On average, the SNLP approach is
faster and does not possess as strong outliers as the direct approach does. Iteration
counts of the individual NLPs of the SNLP sequence are displayed in Fig. 14. In
particular, the first NLP (isothermal model) appears to be the problem with the
hardest instances of the sequence, as in “parameter tracking”: the number of outliers
of NLP 1 clearly exceeds the numbers of outliers of NLPs 2 and 3.

5.3.3. ODE Discretization Problem. As a third example of a useful SNLP sequence,
we finally discuss the numerical results for “ODE discretization”. For this sequence,
we always compute five NLPs, which corresponds to three steps of grid refinement
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Figure 14. Iteration counts (left) and computing times (s, right)
of NLPs of the SNLP sequence (HN test set, “temp. dynamics”)

Table 13. Exit states of direct approach and of SNLP approach
(HN test set, “ODE discretization”)

Exit state Direct SNLP

locally optimal 27 30
locally infeasible 3 0
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Figure 15. Constraint violations of direct approach and of SNLP
approach (HN test set, “ODE discretization”)

(cf. Sect. 4.2.4). Here the results strongly differ from the results of the “parameter
tracking” and “temperature dynamics” problems. As Table 13 shows, the direct
approach is much more successful on this problem type than for the two problems
discussed so far: it solves 90% of all 30 HN instances to local optimality. The
SNLP approach again solves all of the instances. In addition, the direct approach
has only four outliers with respect to constraint violations (cf. Fig. 15), while the
SNLP approach only fails at one instance in finding a locally optimal solution with
negligible constraint violation. All other instances are solved by both approaches
to local optimality with a vanishing objective (i.e., with zero constraint violation).
Thus, speaking only in terms of robustness, the SNLP approach does not offer any
major advantage for these instances. However, it turns out that it again outperforms
the direct approach significantly with respect to iteration counts and computing
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Figure 16. Iteration counts and computing times (s) of direct
approach and of SNLP sequence (HN test set, “ODE discr.”)
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Figure 17. Iteration counts of NLPs of the SNLP sequence (HN
test set, “ODE discretization”)

times (see Fig. 16). The iteration counts of the direct approach vary between a
small number and more than 8000 iterations (corresponding to a computing time
of more than 200 s) whereas the SNLP approach almost always requires less than
1000 iterations in total (corresponding to less than 25 s computing time).

Iteration counts for every NLP of the SNLP sequence are given in Fig. 17.

5.4. The GasLib-582 Test Set. Next we describe the results for the three SNLP
sequences “parameter tracking”, “temperature dynamics” and “ODE discretization”
on the random subset of all GasLib-582 instances given in Table 15 of App. C.

5.4.1. Parameter Tracking and Temperature Dynamics Problems. The characteris-
tics of the computational results for “parameter tracking” and “temperature dynam-
ics” differ significantly from the corresponding results on the HN test set. While it
is very hard to compute feasible solutions with the direct approach on the latter
(cf. Sect. 5.3), this is not the case for the GasLib-582 test set. Table 14 shows the
associated exit states for all sequences. The percentage of instances solved to local
optimality by the direct approach is 96.4% for “parameter tracking” and 95.7% for
“temperature dynamics”. By way of comparison, the SNLP approach solves 98.2%
and 98.5% to local optimality, respectively. This shows that the SNLP approach
is again more robust, but this time only by a small margin. In contrast to the HN
test set there are now also a few instances (7 for “parameter tracking” and 6 for
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Table 14. Exit states of direct approach and of SNLP sequence
(GasLib-582 test set, all three problem types)

“param. tracking” “temp. dynamics” “ODE discr.”

Exit state Direct SNLP Direct SNLP Direct SNLP

locally optimal 380 387 377 388 360 371
broken sequence – 7 – 6 – 22
locally infeasible 14 0 15 0 33 1
intermediate nonopt. 0 0 2 0 1 0
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Figure 18. Constraint violations of direct approach and of SNLP
sequence (GasLib-582 test set, “parameter tracking”)

“temperature dynamics”) on which the SNLP approach fails completely because one
NLP of the corresponding sequence cannot be solved at all (see the row “broken
sequence” in Table 14). All other results of these two problems look very similar
to the corresponding results on the HN test set. We only discuss the results for
“parameter tracking” in detail—all figures for “temperature dynamics” are given in
App. B. As Fig. 18 and 19 show, both approaches behave quite similar in terms of
constraint violations, iteration counts and computing times. The advantage of the
SNLP approach is that it does not possess extreme outliers. However, these outliers
of the direct approach are not as extreme as for the HN test set. The qualitative
behavior of individual iteration counts and numbers of variables, constraints, etc.,
of the SNLP approach is similar to the behavior on the HN test set and therefore
not further discussed here.

5.4.2. ODE Discretization Problem. For “ODE discretization”, both approaches be-
have similar with respect to the number of instances that are solved to local op-
timality. The direct approach solves 91.4% of the test set, the SNLP approach is
slightly more robust with 94.2%. This is similar to the corresponding results on the
HN test set. However, now the SNLP approach has 5.5% broken sequences, which
is significantly higher than for the other problems. Except for some outliers in the
direct approach, both approaches are also comparable with respect to constraint
violations (see Fig. 20). Nevertheless, the SNLP is again clearly preferable since
it outperforms the direct approach significantly in terms of iteration counts and
computing times (see Fig. 21).

5.5. Discussion. In this section we have presented an extensive computational
study of our NLP models on two different test sets involving the solution of more
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Figure 19. Iteration counts and computing times of direct ap-
proach and SNLP sequence (GasLib-582 test set, “param. tracking”)
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Figure 20. Constraint violations of direct approach and of SNLP
sequence (GasLib-582 test set, “ODE discretization”)
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Figure 21. Iteration counts and computing times of direct ap-
proach and of SNLP sequence (GasLib-582 test set, “ODE discr.”)

than 6700 NLPs. The NLP models under consideration are hard to solve due to
their high degree of nonlinearity and non-convexity and because they possess only
a small number of free variables.
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It turns out that the expert instances of the HN test set are much harder than
the instances of the GasLib-582 test set. Especially the problems in which additional
model aspects are successively introduced in the SNLP approach (“parameter track-
ing” and “temperature dynamics”) are hardly solvable from scratch. In these cases,
the SNLP approach proves much more robust and entirely practical: it solves all
instances of the HN test set successfully, while iteration counts and solution times
are comparable to the direct approach. For the “ODE discretization”, on the other
hand, both approaches are comparable with respect to their robustness. This is
to be expected since no additional model aspects are introduced—only the spatial
discretization of pipes is refined over the course of the SNLP sequence. However,
for the “ODE discretization” problem the SNLP approach clearly outperforms the
direct approach on both test sets in terms of iteration counts and solution times.

6. Summary

In part 1 of this paper we describe detailed models for stationary optimization in
gas transport networks. This paper provides an analysis of their structural interplay
and possible combinations of these models and shows that their level of detail and
accuracy is comparable with today’s commercial gas network simulation software.
Finally, we present tailored optimization techniques and show that—using these
techniques—it is possible to solve the resulting NLPs on real-world networks. This
demonstrates that optimization models and solvers can provide a valuable tool for
gas network planners that adds new capabilities to existing simulation tools.
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Appendix A. Model Aspect Graphs
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Figure 22. Model aspect graph of nodes (isothermal, mixing of
gas types)
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Figure 23. Model aspect graph of nodes (isothermal, uniform gas composition)
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Figure 24. Model aspect graph of nodes (non-isothermal, mixing
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Figure 25. Model aspect graph of nodes (non-isothermal, uni-
form gas composition)
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Figure 26. Model aspect graph of control valves (isothermal)
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Figure 27. Model aspect graph of control valves (non-isothermal)
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Figure 28. Model aspect graph of pipes (isothermal). (*) If the
exact solutions of the momentum equation are chosen as a con-
cretization, not every choice of the compressibility factor is possi-
ble, cf. [18]. In addition, not every combination of pipe slope and
compressibility factor is possible. (o) To achieve a smooth NLP
model, flow bound strengthening has to be applied. (+) Only pos-
sible for horizontal pipes
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Figure 29. Model aspect graph of pipes (non-isothermal)
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Appendix B. Computational Results for the Temperature Dynamics
Sequence on the GasLib-582 Test Set
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Figure 30. Constraint violations of direct approach and of SNLP
sequence (GasLib-582 test set, “temperature dynamics”)
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Figure 31. Iteration counts and computing times (s) of direct
approach and of SNLP sequence (GasLib-582 test set, “temperature
dynamics”)
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Appendix C. GasLib-582 Instances

Table 15. ID’s of GasLib-582 instances used in the computational
study of Sect. 5.4. The set of instances can also be downloaded at
www.ifam.uni-hannover.de/~mcs/papers/data.

nomination_freezing_<ID>

35 51 119 121 164 238 362 402 692 714 728 792 831 1023
1093 1106 1135 1191 1233 1263 1416 1505 1568 1588 1599 1775 1889 2005
2055 2110 2145 2206 2236 2293 2351 2378 2466 2491 2567 2629 2724 2969
3044 3078 3126 3225 3383 3465 3496 3500 3592 3673 3853 3910 4028 4182

nomination_cold_<ID>

20 72 276 298 435 486 527 586 595 611 641 681 712 716
796 823 890 893 1033 1056 1132 1156 1309 1311 1327 1363 1380 1432
1439 1461 1466 1468 1543 1689 1703 1748 1765 1792 1828 1851 1910 1951
1971 2038 2067 2077 2124 2147 2182 2189 2192 2195 2311 2316 2406 2425
2438 2478 2486 2510 2516 2551 2556 2627 2686 2763 2791 2799 2857 2891
2898 3064 3086 3136 3155 3202 3387 3395 3397 3407 3528 3539 3543 3566
3620 3624 3707 3769 3800 3824 3878 3987 4038 4105 4129 4146 4176 4200

nomination_cool_<ID>

3 23 89 97 122 141 148 161 201 222 235 277 412 416
456 526 543 565 578 585 628 662 699 724 790 815 821 845
875 879 958 995 1030 1234 1294 1324 1373 1391 1393 1397 1398 1452
1453 1500 1501 1586 1607 1628 1666 1676 1680 1733 1766 1770 1772 1854
1895 1896 1929 1954 2028 2045 2059 2083 2109 2171 2208 2238 2254 2270
2275 2335 2386 2453 2529 2535 2544 2592 2608 2654 2671 2740 2764 2828
2859 2895 2901 2966 3035 3040 3100 3103 3113 3172 3209 3254 3321 3354
3374 3400 3409 3420 3421 3458 3522 3595 3656 3681 3770 3771 3779 3791
3830 3885 3908 3909 3929 3947 3986 4031 4043 4067 4071 4084 4115 4120
4173 4187 4192

nomination_mild_<ID>

2 18 39 47 92 173 241 246 305 521 630 686 711 749
928 952 1011 1016 1187 1203 1281 1307 1344 1386 1422 1459 1472 1481
1559 1646 1743 1840 1853 1961 1964 2044 2157 2495 2531 2539 2636 2897
2950 3124 3151 3182 3197 3230 3419 3480 3524 3552 3661 3701 3734 3766
3848 3890 4170

nomination_warm_<ID>

120 136 244 306 441 540 684 786 844 880 916 1062 1080 1215
1521 1523 1556 1656 1747 1803 1812 1975 2060 2140 2221 2259 2276 2314
2356 2399 2584 2646 2648 2689 2718 2824 2988 3048 3050 3164 3235 3331
3341 3501 3718 3742 3749 3784 3956 3962 4160 4168
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