Oberseminar Analysis und Theoretische Physik

apl. Prof. Dr. Dorothee D. Haroske

Friedrich-Schiller-Universität Jena

Embeddings of Besov-Morrey function spaces

The classical Morrey spaces $\mathcal{M}_{p,u}$, $0 < u \leq p < \infty$, were introduced by Ch.B. Morrey (1938) and are part of the wider class of Morrey-Campanato spaces. They contain all locally u-integrable functions f such that

$$||f|\mathcal{M}_{p,u}(\mathbb{R}^d)|| = \sup_{x \in \mathbb{R}^d, R > 0} R^{\frac{d}{p} - \frac{d}{u}} \left(\int_{B(x,R)} |f(y)|^u dy \right)^{1/u}$$

is finite, where B(x,R) are the usual balls centered at $x \in \mathbb{R}^d$ with radius R > 0. In view of $L_p(\mathbb{R}^d) = \mathcal{M}_{p,p}(\mathbb{R}^d) \hookrightarrow \mathcal{M}_{p,u}(\mathbb{R}^d)$ for any $u \leq p$ they are considered as an extension of the scale of L_p spaces. Built upon these basic spaces Besov-Morrey (and Triebel-Lizorkin-Morrey) spaces attracted some attention in the last years, in particular, in connection with Navier-Stokes equations. Though a lot has been done recently, almost nothing is known about properties of embeddings of these spaces and corresponding applications to spectral theory.

We study embeddings of spaces of Besov-Morrey type,

$$\mathcal{N}^{s_1}_{p_1,u_1,q_1}(\Omega) \hookrightarrow \mathcal{N}^{s_2}_{p_2,u_2,q_2}(\Omega),$$

and obtain necessary and sufficient conditions for the continuity or compactness of such an embedding, where Ω denotes either \mathbb{R}^d or a sufficiently smooth bounded domain in \mathbb{R}^d . We can also characterise the special weighted situation $B_{p_1,q_1}^{s_1}(\mathbb{R}^d,w)\hookrightarrow \mathcal{N}_{p_2,u_2,q_2}^{s_2}(\mathbb{R}^d)$ for a Muckenhoupt \mathcal{A}_{∞} weight w, with $w_{\alpha}(x)=|x|^{\alpha},\ \alpha>-d$, as a typical example. Finally we discuss some embeddings of Besov-Morrey type spaces into classical spaces like $L_p(\Omega)$ or $C(\Omega)$, and give some parallel results for spaces of Triebel-Lizorkin-Morrey type $\mathcal{E}_{p_1,u_1,q_1}^{s_1}(\Omega)$.

This is joint work with Leszek Skrzypczak (Poznań).

Dienstag, 14.5.2013, 15:00 Uhr, Raum g005 Hauptgebäude der Leibniz Universität

Dazu laden herzlich ein: Prof. Dr. Joachim Escher, Prof. Dr. Olaf Lechtenfeld, Prof. Dr. Elmar Schrohe, Prof. Dr. Christoph Walker