
Chapter 10

The precise NLP model

Martin Schmidt, Marc C. Steinbach, Bernhard M. Willert

Abstract In this chapter we describe a highly detailed nonlinear program (NLP)
of gas networks for the case of fixed discrete decisions. By including nonlinear
physics and a detailed description of the technical network devices, a level of ac-
curacy is reached that is comparable to current commercial simulation software.
Our NLP model is used to validate the solutions of the previously described mod-
els. A successful validation provides a solution of the underlying mixed-integer
nonlinear program (MINLP).

Short-term and mid-term planning problems in gas networks, such as the validation of
nominations, involve gas dynamics in combination with complex technical devices. The
laws of thermodynamics introduce partial differential equations (PDEs) and further non-
linear aspects to the problem. In addition, the switching between working modes of active
(i.e., controllable) network elements is modeled by discrete decisions. A full considera-
tion of all aspects leads to a nonsmooth discrete-continuous control problem, which after
discretization of PDEs becomes a nonsmooth mixed-integer nonlinear optimization prob-
lem (nonsmooth MINLP).

The preceding Chapters 6 through 9 present four approaches that simplify the nonlin-
ear aspects of the MINLP—amongst others by approximating the description of the gas
flow—in order to determine suitable discrete decisions for the problem of validation of
nominations. These previously discussed approaches are referred to as decision approaches,
and any solution of a decision approach is considered a solution candidate for the original
MINLP.

In contrast, this chapter presents a nonlinear optimization problem (NLP) based on a
highly detailed model of stationary gas physics and technical devices. In this context we
suppose that discrete decisions are already given, typically as result of one of the decision
approaches, so that all discrete aspects can be removed from the MINLP. In fact, the main
purpose of the NLP model is the validation of solution candidates obtained from the de-
cision approaches: after fixing the discrete decisions, an initial iterate for the NLP model
is generated from the continuous variables of the solution candidate (see Section 5.6). If
the NLP solver converges to a (usually different) optimum, we have a feasible solution
of the original MINLP that is locally optimal with respect to the fixed discrete decisions,
and the given solution candidate has been confirmed to be a valid approximation to this
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182 Chapter 10. The precise NLP model

solution. If the validating NLP is not solved to optimality, no immediate conclusions can
be drawn. For these cases, we introduce relaxed NLP models. Their impact is analyzed
in detail in Section 10.3 and Chapter 11.

One important point remains to be mentioned: after discretizing the PDE constraints
and fixing discrete decisions, we still have a nonsmooth optimization problem, but stan-
dard NLP theory, algorithms and solvers rely on smoothness (C 2), specifically to guar-
antee stability of solutions. Therefore we will apply reformulations and smoothing tech-
niques to arrive at a standard NLP model,

min
x∈�n

f (x)

s.t. c (x) = 0,

c! (x)≥ 0,

x ∈ [x, x],

(10.1)

where f : �n → � is the objective function and c : �n → �m , c! : �n → �k denote
equality and inequality constraints, respectively, with f , c , c! ∈ C 2.

The central part of this chapter is Section 10.1: here we formulate suitable component
models for the relevant aspects of gas physics and for the individual element types of gas
networks. We also discuss the discretization of PDE constraints and the direct approxi-
mation of their solutions, and we develop smoothing techniques where applicable. The
component models are then combined to a standard NLP (10.1) in Section 10.4. Typical
objective functions are presented in Section 10.2 and in Section 10.3 we consider relax-
ations of the NLP that we use to obtain further information in cases where no feasible
solution is found.

10.1 Component models

The gas network is modeled as a directed graph G = (V ,A)with node set V and arc set A.
The node set is partitioned into entries V+, exits V−, and inner nodes V0. Gas is supplied
to the network at entries and discharged at exits. At inner nodes, no gas is supplied or
discharged.

The arc set is partitioned into pipes Api, resistors Ars, short cuts Asc, valves Ava, control

valve stations Acv, and compressor groups Acg. Every arc a = (u, v) connects a node u

(called tail) to a different node v (called head). The notations δ−(u) and δ+(u) refer
to the respective sets of incoming and outgoing arcs of u. The set of all incident arcs is
δ(u) =δ−(u)∪δ+(u).

Every network element has associated vectors of constraints and (continuous) vari-
ables. Throughout this chapter, constraints are denoted by c and vectors of variables
by x, subscripted with indices or index sets; e.g., c = (ci )i∈ is the vector of all equality
constraints and xApi

= (xa)a∈Api
is the vector of all pipe variables.

Some gas quantities vary along arcs, so that their values at the head and tail may differ.
If x is such a quantity, e.g., gas temperature, then the value on a = (u, v) at u is written as
xa:u and the value on a at v is denoted by xa:v . These quantities are often mixed at nodes
and thus are discontinuous across nodes, so that xa:u �= xb :u if a �= b ∈ δ(u).

Finally, certain constraints depend on the direction of flow. To this end, we define
flows from tail to head as positive and flows from head to tail as negative, and for every
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10.1. Component models 183

node u we define respective sets of inflow arcs and outflow arcs:

! (u) = {a ∈ δ−(u) | qa ≥ 0}∪ {a ∈δ+(u) | qa ≤ 0},

$ (u) = {a ∈ δ−(u) | qa < 0}∪ {a ∈δ+(u) | qa > 0}.

Now let x be a quantity that varies along arcs. The respective values of x at the inflow
node and outflow node of a = (u, v) are then written as

xa,in =

)

xa:u , qa ≥ 0,

xa:v , qa < 0,
xa,out =

)

xa:v , qa ≥ 0,

xa:u , qa < 0.
(10.2)

Note that constraints that depend on xa,in or xa,out will typically be nonsmooth at qa = 0.
We remark that most of the aspects discussed in this section are based on Chapter 2,

where additional information can be found. Nevertheless, many formulas of Chapter 2
are restated here in order to fix the notation required to formulate the concrete NLP
models.

10.1.1 Common model aspects

Here we present models of four basic physical phenomena that are relevant to several
types of network elements. These phenomena depend on the gas composition, which is
characterized by a gas quality parameter vector X with seven components (see Section 2.2):
molar mass m, calorific value Hc, pseudocritical pressure pc and temperature Tc, and co-

efficients of the molar isobaric heat capacity, Ã, B̃ , C̃ ,

X = (m, Hc, pc,Tc, Ã, B̃ , C̃ ). (10.3)

The first common aspect is the deviation of real (natural) gas from ideal gas, which is
measured by the compressibility factor z; for ideal gas z = 1. Various empirical compress-
ibility models have been developed; see Section 2.3.1. In our NLP model we use either the
equation of the American Gas Association (AGA) (2.5), which is known to be sufficiently
accurate for pressures up to 70 bar,

zaga(p,T , pc ,Tc) = 1+ 0.257pr − 0.533
pr

Tr

, where pr =
p

pc

, Tr =
T

Tc

, (10.4)

or Papay’s equation (2.4), which is appropriate for pressures up to 150 bar,

zpapay(p,T , pc,Tc) = 1− 3.52pre−2.26Tr + 0.274 (pr)
2 e−1.878Tr . (10.5)

The constraint resulting from the chosen compressibility model is formulated as

0= ccompr(z, p,T , pc ,Tc) = z − zaga(p,T , pc,Tc) (10.6a)

or

0= ccompr(z, p,T , pc ,Tc) = z − zpapay(p,T , pc ,Tc), (10.6b)

where the concrete choice is up to the modeler. Several constraints described in the next
sections make use of the partial derivatives

∂ z

∂ p
(p,T , pc ,Tc) and

∂ z

∂ T
(p,T , pc ,Tc)
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184 Chapter 10. The precise NLP model

of the chosen compressibility model. We choose to substitute them directly into the con-
straints in which they appear, instead of representing them by auxiliary variables and
additional constraints.

The second aspect is the specific isobaric heat capacity cp , or equivalently the molar

isobaric heat capacity c̃p = mcp ; see Section 2.2. These quantities express the energy that

is required to increase the temperature of one kilogram (or mol) of gas by one Kelvin at
constant pressure. We use the molar heat capacity of real gas, which is expressed by the
molar heat capacity of ideal gas c̃0

p and a correction term for real gas ∆c̃p :

0= cmhc-real(m, cp , c̃0
p ,∆c̃p) = mcp − (c̃

0
p +∆c̃p ),

0= cmhc-ideal(c̃0
p ,T , Ã, B̃ , C̃ ) = c̃0

p − (Ã+ B̃T + C̃ T 2),

0= cmhc-corr(∆c̃p , p,T , pc ,Tc)

=∆c̃p +R

∫ p

0

1

p̃

�

2T
∂ z

∂ T
( p̃,T , pc ,Tc)+T 2 ∂

2z

∂ T 2
( p̃,T , pc,Tc)

	

d p̃.

Here, c̃0
p is modeled by a least-squares fit with parameters Ã, B̃ , C̃ . The partial derivatives

of the compressibility factor are substituted in-place, hence cmhc-corr does not have z as an
explicit argument. If the AGA formula (10.4) is chosen for the compressibility factor, the
correction term for real gas vanishes, and the model of heat capacity reduces to the model
for ideal gas. If Papay’s equation is chosen instead, the analytical solution of the integral
is used directly in cmhc-corr, i.e.,

cmhc-corr(∆c̃p , p,T , pc ,Tc)

=∆c̃p +R
��

γδ +
1

2
γδ2Tr

�

p2
r TreδTr − (2αβ+αβ2Tr)prTreβTr

�

with constants

α= 3.52, β=−2.26, γ = 0.274, δ =−1.878.

The full heat capacity model is given by the constraint vector

0= cheat-cap(p,T ,X , xheat-cap) =







cmhc-real(m, cp , c̃0
p ,∆c̃p )

cmhc-ideal(c̃0
p ,T , Ã, B̃ , C̃ )

cmhc-corr(∆c̃p , p,T , pc ,Tc)





 (10.7)

with associated variables
xheat-cap = (cp , c̃0

p ,∆c̃p).

Another common aspect is the Joule–Thomson effect (see Section 2.2 for physical
details), which describes the temperature change that results from any pressure change
according to (2.6) and (2.7),

Tout −Tin =

∫ pout

pin

µJT(p,T , m, cp , pc,Tc) dp,

where

µJT(p,T , m, cp , pc,Tc) =
T

p

R

mcp

�

T
∂ z

∂ T
(p,T , pc ,Tc)

�

.
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10.1. Component models 185

Since the calculation of gas temperatures involves substantial inaccuracies, because exact
environmental temperatures are usually not known for mid-term planning, a simple two-
point finite difference approximation is usually sufficiently accurate, yielding the con-
straint

0= c jt(pin, pout,Tin,Tout,X ,µJT , cp,out)

=







µJT −
Tout

pout

R

mcp,out

�

Tout

∂ z

∂ T
(pout,Tout, pc,Tc)

�

Tout −Tin − (pout − pin)µJT





 . (10.8)

The last common phenomenon of gas physics is the interrelation of densityρ, pressure
p, and temperature T . These gas quantities are coupled by the thermodynamical standard
equation of state for real gases (2.20):

0= ceos(p,T ,ρ, m, z) = ρzRT − pm. (10.9)

10.1.2 Nodes

Every node u ∈ V has a pressure variable pu , a temperature variable Tu , and a vector of
mixed gas parameters Xu (10.3). The incident arcs define relations between the pressures
and temperatures of the connected nodes.

Nodes are assumed to have zero volume and hence satisfy a mass balance equation of
Kirchhoff type:

0= c flow
u (qδ(u)) =
∑

a∈δ+(u)

qa −
∑

a∈δ−(u)

qa − qnom
u . (10.10)

Here, qδ(u) contains the mass flows along the incident arcs, and qnom
u denotes the exter-

nally supplied or discharged mass flow at u, which satisfies

qnom
u ≥ 0, u ∈V+,

qnom
u = 0, u ∈V0,

qnom
u ≤ 0, u ∈V−.

These flows are typically fixed to values that are determined by the considered nomina-
tion. Thus, they are regarded as constants in this context. However, variables representing
exchanged flows can easily be added to the model, if the supplied and discharged flows are
not known a priori.

Gas flows entering node u are assumed to mix perfectly. The components of X mix
according to the distribution of molar inflows q̂ = q/m, yielding a convex combination
Xu for the outflow composition. The resulting constraint reads (see (2.9))

0= cmix
u (q! (u),X! (u),Xu )

=Xu

�

q̂nom
u +
∑

a∈! (u)

q̂a

�

−
�

q̂nom
u X nom

u +
∑

a∈! (u)

q̂aXa

�

.
(10.11)

Here and in what follows, Xa is the vector of gas parameters of the gas in arc a and Xu

represents the mixed gas of inflow arcs at node u. Both q̂nom
u and X nom

u are given constants
at entries u ∈ V+ and are set to zero at other nodes u ∈ V− ∪V0. The mixed quality
parameters are propagated to all outgoing arcs,

0= c
prop
u,a (Xu ,Xa) =Xu −Xa for all a ∈ $ (u).
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186 Chapter 10. The precise NLP model

The exact mixing equation for gas temperatures slightly differs from (10.11): it can be
derived from the conservation of energy and involves the molar isobaric heat capacity c̃p ,

yielding a convex combination with weights determined by the distribution of c̃p q̂ = cp q
(see (2.10)):

Tu =
c̃nom

p,u q̂nom
u T nom

u +
∑

a∈! (u) c̃p,a:u q̂aTa:u

c̃nom
p,u q̂nom

u +
∑

a∈! (u) c̃p,a:u q̂a

, (10.12)

where T nom
u is the (constant) temperature of the supplied gas at entries u ∈ V+ and zero

for all other nodes u ∈ V− ∪V0. Since (10.12) results in a quite complicated model, we
approximate the equations of temperature mixing and propagation by assuming identical
heat capacities, so that the corresponding factors in (10.12) cancel each other. The in-
vestigation of the quality of this approximation remains a topic of further research. The
resulting constraints are:

0= cmix-temp
u (q! (u), m! (u), (Ta:u )a∈! (u),Tu )

= Tu

�

q̂nom
u +
∑

a∈! (u)

q̂a

�

−
�

q̂nom
u T nom

u +
∑

a∈! (u)

q̂aTa:u

�

,
(10.13)

0= cprop-temp
u,a (Tu ,Ta:u ) = Tu −Ta:u for all a ∈ $ (u). (10.14)

Note that all mixing constraints are discontinuous since ! (u) and $ (u) depend on the
flow directions. To obtain a smooth model, we fix all flow directions according to the
candidate solution of the decision approach (by setting 0 as lower or upper bound on qa).
Letting xbase

a denote the common variables of all arc types (see the immediately following
Section 10.1.3), the full set of constraints of node u becomes

0= cu(xu , xbase
δ(u)) =

















c flow
u (qδ(u))

cmix
u (q! (u),X! (u),Xu )

(c
prop
u,a (Xu ,Xa))a∈$ (u)

cmix-temp
u (q! (u), m! (u), (Ta:u )a∈! (u),Tu )

(cprop-temp
u,a (Tu ,Ta:u ))a∈$ (u)

















and the vector of variables at node u reads

xu = (pu ,Tu ,Xu ).

10.1.3 Arcs

Every arc a = (u, v) ∈ A has a mass flow variable qa , variables for the gas temperatures
at tail and head, Ta:u and Ta:v , respectively, and a quality parameter vector Xa , yielding a
common basic variable vector of all arc models:

xbase
a = (qa,Ta:u ,Ta:v ,Xa).

The specific constraints of every arc type will be described separately below; in some cases
they involve additional variables.

10.1.4 Pipes

Pipes outnumber all other elements of a gas network. They are the most essential ele-
ments and the only ones with a nonnegligible length, which transport the gas over large
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10.1. Component models 187

distances. Due to friction at the inner wall and due to gravity (if the pipe is inclined),
pressure and temperature change when gas flows through a pipe. In addition, there is heat
exchange with the surrounding. As already explained in Section 2.3.1, this leads to highly
complex gas dynamics described by a system of hyperbolic, partial differential equations
(PDEs).

We consider a cylindrical pipe with diameter D, cross-sectional area A= D2π/4, and
slope s ∈ [−1,+1] (the tangent of the inclination angle), so that the transient gas dynamics
can be expressed by the one-dimensional PDE system of Euler equations (2.12)–(2.14) as
derived in Feistauer (1993) and Lurie (2008):

∂ ρ

∂ t
+

1

A

∂ q

∂ x
= 0, (10.15a)

1

A

∂ q

∂ t
+
∂ p

∂ x
+

1

A

∂ (q v)

∂ x
+ g ρ s +λ(q)

|v|v

2D
ρ= 0, (10.15b)

Aρ cp

�

∂ T

∂ t
+ v
∂ T

∂ x

�

−A
�

1+
T

z

∂ z

∂ T

�

∂ p

∂ t

−Av
T

z

∂ z

∂ T

∂ p

∂ x
+Aρv g s +πD cHT (T −Tsoil) = 0,

(10.15c)

Here x and t denote the spatial coordinate and time coordinate, respectively, and g , cHT,
and Tsoil stand for the gravitational acceleration, the heat transfer coefficient, and the soil
temperature, respectively. The friction factor λ(q) in (10.15b) models frictional forces
at the inner pipe walls; see Section 2.3.1. Given a specific pipe a ∈ Api, the gas velocity

v is related to the mass flow q , density ρ, and the cross-sectional pipe area Aa via (2.11)
yielding the constraint

0= cvel-flow
a (q , v,ρ) =Aaρv − q . (10.16)

Since we consider the stationary case, all partial derivatives with respect to time vanish,
and with (10.16) the above PDE system reduces to a semi-implicit system of ordinary
differential equations (ODEs) for q , p, and T ; ρ and p are related by (10.9). Applying
some minor transformations (e.g., multiplying with ρ and using the chain-rule) yields

∂ q

∂ x
= 0, (10.17a)

ρ
∂ p

∂ x
−

q2

A2

∂ ρ

∂ x

1

ρ
+ gρ2 s +λ(q)

|q |q

2A2D
= 0, (10.17b)

qcp

∂ T

∂ x
−

qT

ρz

∂ z

∂ T

∂ p

∂ x
+ q g s +πDcHT(T −Tsoil) = 0. (10.17c)

The continuity equation (10.17a) readily implies that q is constant along the pipe, which
justifies the use of a single mass flow variable qa for every pipe a. The momentum equation
(10.17b) models the pressure gradient in terms of impact pressure, gravitational forces and
frictional forces, and the energy equation (10.17c) models the temperature gradient in
terms of pressure changes, gravitational effects, and heat exchange with the surrounding
soil. Figure 10.1 illustrates possible profiles of pressure and temperature along a pipe and
the influence of the pipe diameter.
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Figure 10.1. Pressure and temperature profiles of three horizontal pipes with different diam-
eters (L= 25 km, k = 0.06 mm, q = 500 kg/s). (Source: Schmidt, Steinbach, and Willert (2014).)

10.1.4.1 Smooth approximation of the friction term

Depending on which model of λ(q) is chosen, the friction term λ(q)|q |q in the momen-
tum equation (10.17b) will be nonsmooth: the product |q |q creates a second-order dis-
continuity at q = 0 if λ(0) �= 0, and the piecewise reference model of λ(q) defined by the
formulas of Prandtl–Colebrook (2.17) and Hagen–Poiseuille (2.16) has a jump disconti-
nuity at the transition between laminar and turbulent flow; see Chapter 2 for details.

To avoid discontinuities, we replace the entire friction term λ(q)|q |q by a globally
smooth approximationφ(q). This approximation has originally been developed for water
networks by Burgschweiger, Gnädig, and Steinbach (2009) and Burgschweiger, Gnädig,
and Steinbach (2009), and applies as well to gas networks (see Schmidt, Steinbach, and
Willert (2014)). The corresponding constraint for a specific pipe a ∈ Api reads

0= c friction
a (φa , qa) =φa − λ̃a

�

;

q2
a + e2

a + ba +
ca
7

q2
a + d 2

a

�

qa . (10.18)

As illustrated in Figure 10.2, our approximation (10.18) is asymptotically correct for
|q | →∞ if the following parameters are used (see Burgschweiger, Gnädig, and Steinbach
(2009)):

λ̃a = (2 log10βa)
−2, ba = 2δa , ca = (lnβa + 1)δ2

a −
e2

a

2
,

αa =
2.51Aaη

Da

, βa =
ka

3.71Da

, δa =
2αa

βa ln10
.

Here, η and ka denote the dynamic viscosity of gas and the roughness of the pipe (see
Section 2.3.1). The two smoothing parameters da , ea > 0 remain to be chosen by the
modeler (see Schmidt, Steinbach, and Willert (2014); Burgschweiger, Gnädig, and Stein-
bach (2009)).
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0 50 100

0

50

mass flow q

fr
ic

ti
o
n

te
rm
λ
(q
)|

q
|q

(b) Turbulent flow.

Figure 10.2. Friction term λ(q)|q |q according to Hagen–Poiseuille and Prandtl–Colebrook
( ) and smooth approximation φ(q) with d = e = 2.2 ( ) vs. mass flow q in kg/s. (Source:
Schmidt, Steinbach, and Willert (2014).)

10.1.4.2 ODE discretization

After obtaining a constant mass flow qa from the continuity equation and smoothing
the friction term, stationary gas dynamics are expressed by a spatial system of ODEs:
a smooth version of the momentum equation (10.17b) and the unmodified smooth en-
ergy equation (10.17c). This system of two equations for the three variables (ρ, p,T ) is
completed by the equation of state (10.9); see the explanation for the general case in Sec-
tion 2.3.1.

The standard procedure for converting ODE constraints to finite-dimensional NLP
constraints is a discretization. Depending on the chosen grid, this results in a highly accu-
rate model with a large number of nonlinear constraints. For simplicity, both in terms of
implementation and presentation, we use an a priori discretization rather than an adap-
tive one: given a pipe a ∈ Api, we choose some fixed grid, 0= xa,0 < · · ·< xa,d = La . The

continuous variables in (10.17b) and (10.17c) are then evaluated at the spatial grid points.
To this end, we define the following abbreviations for k = 0, . . . , d :

pa,k = p(xa,k ), za,k = z(pa,k ,Ta,k , pc,a ,Tc,a) (see (10.6)),

Ta,k = T (xa,k), cp,a,k = cp(pa,k ,Ta,k ,Xa) (see (10.7)),

ρa,k = ρ(xa,k ), zT ,a,k =
∂ z

∂ T
(pa,k ,Ta,k , pc,a ,Tc,a).

Note that pressures pa,0 and pa,d are identified with the pressure variables at the tail
and head, pu and pv , respectively. In analogy, the temperature variables T0 and Td are
identified with Ta:u and Ta:v . Also for simplicity, we illustrate the ODE discretization
with a two-point finite difference approach (backwards in space). Denoting step sizes by
∆xa,k = xa,k − xa,k−1, k = 1, . . . , d , this yields the discrete pressure gradient

p ′(xa,k )≈
p(xa,k )− p(xa,k−1)

∆xa,k

= :
∆pa,k

∆xa,k

, k = 1, . . . , d ,
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190 Chapter 10. The precise NLP model

and similar gradient approximations for temperature and density. The discretized ODE
constraints can then be written (for k = 1, . . . , d ) as

0= cmom-discr
a (qa , pa,k , pa,k−1,ρa,k ,ρa,k−1,φa)

= ρa,k

∆pa,k

∆xa,k

−
q2

a

A2
a

∆ρa,k

∆xa,k

1

ρa,k

+ gρ2
a,k sa +

φa

2A2
a Da

, (10.19a)

0= cener-discr
a (qa , pa,k , pa,k−1,Ta,k ,Ta,k−1,ρa,k , za,k , cp,a,k , pc,a ,Tc,a)

= qa cp,a,k

∆Ta,k

∆xa,k

−
qaTa,k

ρa,k za,k

zT ,a,k

∆pa,k

∆xa,k

+ qa g sa

+πDa cHT,a(Ta,k −Tsoil,a). (10.19b)

The partial derivative zT ,a,k is substituted directly in the constraint instead of introducing
an additional variable and an according constraint. Next, we have to add the constraints
for the equation of state, compressibility, and heat capacity in every grid point, obtaining
(for k = 1, . . . , d )

0= c
dyn

a,k
(xbase

a , x
dyn

a,k
, x

dyn

a,k−1
,φa , xu , xv )

=

















cmom-discr
a (qa, pa,k , pa,k−1,ρa,k ,ρa,k−1,φa)

cener-discr
a (qa, pa,k , pa,k−1,Ta,k ,Ta,k−1,ρa,k , za,k , cp,a,k , pc,a ,Tc,a)

ceos(pa,k ,Ta,k ,ρa,k , ma , za,k )

c compr(za,k , pa,k ,Ta,k , pc,a ,Tc,a)

cheat-cap(pa,k ,Ta,k ,Xa , xheat-cap

a,k
)

















, (10.20)

where the required additional dynamic variables are defined as

x
dyn

a,k
= (pa,k ,Ta,k ,ρa,k , za,k , x

heat-cap

a,k
), k = 1, . . . , d − 1,

xdyn

a,k
= (ρa,k , za,k , xheat-cap

a,k
), k ∈ {0, d}.

Together with the smooth approximation of the friction term, the complete model of the
discretized dynamic system finally reads

0= c
dyn
a (xbase

a , x
dyn
a , xu , xv ) =

�

c friction
a (φa, qa)

"

c
dyn

a,k
(xbase

a , x
dyn

a,k
, x

dyn

a,k−1
,φa , xu , xv )
#d

k=1

�

,

x
dyn
a = (φa , (x

dyn

a,k
)dk=0).

Finally, we remark that one may also apply suitable higher order discretizations in-
stead of the presented two-point finite differences scheme.

10.1.4.3 ODE approximation

A second possible approach for converting ODE constraints to finite-dimensional NLP
constraints is the direct approximation of ODE solutions, which leads to fewer nonlinear
equations with a reduced degree of accuracy as compared to a discretization.

In fact, the decision approaches of the preceding chapters drop the energy equation
(10.17c) and use approximate solutions of the momentum equation (10.17b). This is an
approach with a long tradition in gas engineering, so that suitable approximations are well
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10.1. Component models 191

known and well tested. Specifically, by further neglecting the impact pressure term and
assuming a mean compressibility factor zm,a = z(pm,a ,Tm,a , pc,Tc) (that can be assumed
by using a mean pressure pm,a and a mean temperature Tm,a), solutions of the momentum
equation (10.17b) can be approximated by the equation stated in Lemma 2.1,

0= cmom-approx
a (pu , pv ,φa ,Tm,a , zm,a , ma)

= p2
v −

�

p2
u −Λaφa

e Sa − 1

Sa

	

e−Sa , (10.21)

where the roughly quadratic dependence on qa is hidden in the friction variable,
φa ≈ λ(qa)|qa |qa , and Λa , Sa are defined in terms of the above mean values:

Λa = Λa(Tm,a , zm,a , ma) =
La

A2
a Da

zm,aTm,a R

ma

,

Sa = Sa(Tm,a , zm,a , ma) = 2g La sa

ma

zm,aTm,a R
.

More details on this approximation can be found in Chapter 2; suitable choices for the
approximate mean values pm,a ,Tm,a will be discussed below.

An approximation replaces the energy equation (10.17c) when an isothermal approach
is not desired. It is derived by assuming a constant value for the specific heat capacity cp

and applying a two point finite difference. In addition, mean values for pressure pm,a and
Tm,a are used to obtain mean values for the compressibility factor zm,a and the density
ρm,a , yielding (see Schmidt, Steinbach, and Willert (2014))

0= cener-approx
a (qa, pa,in, pa,out,Ta,in,Ta,out,ρm,a , pm,a ,Tm,a , zm,a , pc,a ,Tc,a)

= qa

�

Ta,out −Ta,in+
g sa La

cp

�

−
zT ,m,a

cpρm,a zm,a

Ta,out qa (pa,out − pa,in)

+
πDacHT,aLa

cp

(Ta,out −Tsoil,a), (10.22)

where

zT ,m,a =
∂ z

∂ T
(pm,a ,Tm,a , pc,a ,Tc,a)

is substituted directly. Recall the definition of direction-dependent variables: for positive
flow we have

pa,in = pu , pa,out = pv , Ta,in = Ta:u , Ta,out = Ta:v ,

and in case of (strictly) negative flow the definitions read

pa,in = pv , pa,out = pu , Ta,in = Ta:v , Ta,out = Ta:u .

For ρm,a we need an additional constraint for the equation of state (10.9). Alternatively,
we can work with a further simplified model where ρm,a is replaced by a constant mean
value.

Figure 10.3 compares the temperature change according to the ODE (10.19b) and its
approximation (10.22). On the left, the temperature profile along a pipe is illustrated and
on the right the temperature profile for varying mass flow is presented.
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(a) Gas temperature in K vs. pipe position in km.
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(b) Gas temperature in K vs. mass flow in kg/s.

Figure 10.3. Gas temperature according to ODE discretization with 40 discretization steps
( ) and approximation ( ) (L= 24 km, D = 1 m, k = 0.1 mm, q = 500 kg/s). (Source: Schmidt,
Steinbach, and Willert (2014).)

The approximating constraints (10.21) and (10.22) make both use of approximate mean
pressures pm,a and temperatures Tm,a . Several possibilities exist to define these values and
to incorporate them into an NLP. A simple choice defines the values as constant averages
of given variable bounds in

pm,a =
1

2

"

max(p u , p v )+min(p u , pv )
#

, (10.23a)

Tm,a =
1

2

"

max(T a:u ,T a:v)+min(T a:u ,T a:v )
#

. (10.23b)

In case of globally identical temperature bounds, (10.23b) can be simplified to

Tm,a =
1

2
(T +T ) .

A more sophisticated choice adds a constraint to include the mean values as variables that
depend on pressures and temperatures at the pipe; see Menon (2005) and Eq. (2.28) in
Section 2.3.1.2:

0= cmean
a (pm,a ,Tm,a , pu , pv ,Ta:u ,Ta:v ) =





pm,a −
2
3

"

pu + pv −
pu pv

pu+pv

#

Tm,a −
2
3 (Ta:u +Ta:v −

Ta:u Ta:v

Ta:u+Ta:v
)



 . (10.24)

Since pressure and temperature profiles along a pipe have similar trends—see Figure 10.1—
the same formula for the mean value is used. Alternatively, the arithmetic mean can be
used for temperature. The full approximation model of a pipe is thus expressed by the
constraints

0= cdyn
a (xbase

a , xdyn
a , xu , xv )

=





















c friction
a (φa , qa)

cmom-approx
a (pu , pv ,φa ,Tm,a , zm,a , ma)

cener-approx
a (qa , pa,in, pa,out,Ta,in,Ta,out,ρm,a , pm,a ,Tm,a , zm,a , pc,a ,Tc,a)

ceos(pm,a ,Tm,a ,ρm,a , ma , zm,a)

c compr(zm,a , pm,a ,Tm,a , pc,a ,Tc,a)

cmean
a (pm,a ,Tm,a , pu , pv ,Ta:u ,Ta:v )





















(10.25)
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and variables
x

dyn
a = (φa, pm,a ,Tm,a , zm,a ,ρm,a).

We remark that constraint (10.25) has the same name as constraint (10.20) since both can
be used as alternatives in the complete NLP model. If (10.23) is chosen for the mean
values, the model simplifies: the constraint cmean

a is dropped, and pm,a as well as Tm,a

become constants.

10.1.4.4 Velocity constraint

The pressure change along a pipe induces changes of density and temperature, and also
of gas velocity. Since high velocities can generate vibrations of the pipe (which in turn
may lead to substantial noise emission or, worse, bursting of pipes), our model includes
velocity limits for the gas flow. By (10.16), the velocity is related to density and mass flow,
and (10.17) leads to a monotone change of pressure and temperature (with respect to the
spatial coordinate). This results in a monotone change of density along the pipe due to the
equation of state, and therefore the gas velocity is also monotone. It is thus sufficient to
control the velocity at the end points of pipe a = (u, v). The required additional variables,
xvel

a = (va:u , va:v ,ρa:u ,ρa:v , za:u , za:v ), are determined by the constraints

0= cvel-1
a (xbase

a , xvel
a , xu , xv ) =





















cvel-flow
a (qa , va:u ,ρa:u)

cvel-flow
a (qa, va:v ,ρa:v )

ceos(pu ,Ta:u ,ρa:u , ma , za:u )

ceos(pv ,Ta:v ,ρa:v , ma , za:v )

ccompr(za:u , pu ,Ta:u , pc,a ,Tc,a)

ccompr(za:v , pv ,Ta:v , pc,a ,Tc,a)





















. (10.26)

If an ODE discretization scheme is used, the densities ρa:u and ρa:v coincide with the
densities at the grid endpointsρa,0 andρa,d . This also holds for the compressibility factors,
hence the two equations of state and the two constraints for the compressibility factors
are already part of the model, and the velocity constraints reduce to

0= cvel-2
a (xbase

a , xvel
a , x

dyn
a ) =

�

cvel-flow
a (qa , va:u ,ρa,0)

cvel-flow
a (qa , va:v ,ρa,d )

�

, xvel
a = (va:u , va:v ).

Any velocity limits are thus represented by bounds on the velocity variables xvel
a .

10.1.4.5 Complete pipe model

Combining the constraints cdyn
a and cvel

a , we obtain the complete pipe model

0= ca(xa , xu , xv ) =

�

c
dyn
a (xbase

a , x
dyn
a , xu , xv )

cvel-1
a (xbase

a , xvel
a , xu , xv )

�

or

0= ca(xa , xu , xv ) =

�

c
dyn
a (xbase

a , x
dyn
a , xu , xv )

cvel-2
a (xbase

a , xvel
a , x

dyn
a )

�

,

with the variable vector xa = (x
base
a , x

dyn
a , xvel

a ), depending on the required constraints for
the gas velocity.

&RS\ULJKW��������6RFLHW\�IRU�,QGXVWULDO�DQG�$SSOLHG�0DWKHPDWLFV�

127�)25�',675,%87,21



194 Chapter 10. The precise NLP model

10.1.4.6 Comparison of model choices

As we have seen, several physical aspects allow for multiple modeling choices. The possi-
ble combinations lead to a broad variety of variants of the pipe constraints ca , featuring
different advantages and disadvantages.

A modestly accurate model combines the approximation (10.25) with the smooth fric-
tion model (10.18), the AGA compressibility model (10.4), and constant values of mean
pressure and temperature (10.23), but assumes isothermal gas flow and thus drops the
approximation of the energy equation from the model. Of all the presented alternative
models for the relevant physical phenomena, this combination features the largest degree
of similarity to the decision approaches described in Chapters 6–9, and a candidate so-
lution generated by any decision approach will typically be a good initial point for NLP
solution (see Section 5.6). The drawback is that this combination is in fact one of the most
inaccurate choices of pipe models. Nevertheless, our experiences show that it proves to
be reasonably accurate for several practical situations.

A very accurate pipe model combines a discretization of the Euler equations (10.20)
with Papay’s compressibility model (10.5). This leads to larger discrepancies with the
models on which the decision approaches are based and tends to reduce the quality of
candidate solutions as initial points for NLP solution. Moreover, it also tends to increase
the likelihood that a feasible flow situation for the NLP will require different discrete
decisions, and hence the probability that candidate solutions of the decision approaches
will be rejected.

For a more detailed elaboration of these aspects we refer to Chapter 11.

10.1.5 Resistors

A resistor a = (u, v) ∈Ars is a fictitious network element that is used to account for pres-
sure losses from components without an exact description in our model, such as measure-
ment devices, narrow bends of pipes, filters, or internal station piping; see Section 2.3.2.
The simpler of the two empirical models, which assumes a constant pressure loss ξa > 0 in
the direction of flow, has a jump discontinuity in our context; see (2.32). The more elabo-
rate resistor model of Darcy–Weisbach type formulates the pressure drop with a fictitious
diameter Da and a resistance coefficient ζa > 0; see Section 2.3.2:

pu − pv =
8ζa
π2D4

a

qa |qa |

ρa,in

. (10.27)

Here, (10.27) is obtained from (2.30) by replacing the velocity by the mass flow. Rather
than a jump discontinuity, this model has only a second-order discontinuity at qa = 0.
Both nonsmooth aspects are handled by fixing the direction of flow according to the given
candidate solution. In summary, the pressure loss of a resistor is given by the constraint

0=









cp-loss
a (qa, pu , pv ) = pu − pv − sgn(qa)ξa or

cp-loss
a (qa, pu , pv ,ρa,in) = pu − pv −

8ζa
π2D4

a

qa |qa |

ρa,in

.

The inflow density ρa,in depends on the flow direction and correlates to the pressure, tem-
perature, and compressibility factor either at the tail or at the head of the arc; see (10.2).
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As always, the pressure loss induces a corresponding temperature decrease due to the
Joule–Thomson effect (10.8). Thus, the full resistor model of a linear resistor reads

0= ca(xu , xv , xa) =







cp-loss
a (qa , pu , pv )

cheat-cap
a (pv ,Ta:v ,Xa , xheat-cap

a,out )

c jt(pu , pv ,Ta:u ,Ta:v ,Xa ,µJT,a , cp,a,out)





 , (10.28)

xa = (x
base
a , xheat-cap

a,out ,µJT,a).

The nonlinear model of a resistor is

0= ca(xu , xv , xa) =

















cp-loss
a (qa, pu , pv ,ρa,in)

cheat-cap
a (pv ,Ta:v ,Xa , xheat-cap

a,out )

c jt(pu , pv ,Ta:u ,Ta:v ,Xa ,µJT,a , cp,a,out)

ceos(pa,in,Ta,in,ρa,in, ma , za,in)

c compr(za,in, pa,in,Ta,in, pc,a ,Tc,a)

















, (10.29)

xa = (x
base
a , xheat-cap

a,out ,µJT,a ,ρa,in, za,in).

If the gas composition is uniform and the gas temperature is approximated by a mean
value, i.e., no mixing equations are required, the pressure loss at resistors is the only model
aspect left that depends on the flow direction. If a smooth approximation is applied, flow
directions do not have to be fixed at any arc. See Section 9.1.3 for suitable nonlinear
smoothings.

10.1.6 Valves

A valve a = (u, v) ∈ Ava is an active element which can be open or closed. Valves are
used to route the gas flow through the network, to decouple subnetworks, or to shut
down sections of the network for maintenance. The discrete valve status is always fixed
in our NLP context. An open valve has no impact on the flow (see Section 2.3.3) yielding
identical inflow and outflow pressure and temperature,

0= ca(xu , xv , xa) =

�

pu − pv

Ta,in −Ta,out

�

, xa = xbase
a . (10.30)

A closed valve simply acts like an absent arc: there is no flow through the valve, and the
pressure and temperature of the connected nodes are completely decoupled,

0= ca(xu , xv , xa) = qa , xa = xbase
a . (10.31)

10.1.7 Short cuts

Short cuts a = (u, v) ∈ Asc are again fictitious network elements introduced exclusively
for modeling purposes, such as splitting a single physical exit with several customers into
several virtual exits with just one customer each. A short cut does not impair the flow in
any way, having the same model as an open valve; see (10.30).

10.1.8 Control valve stations with remote access

A control valve station with remote access a = (u, v) ∈ Acv is used to reduce the pressure
in a controlled way. This is necessary in cases where customers or downstream networks
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0

u
resistor resistor

4

v
control valve preheater

1 2 3

Figure 10.4. Active control valve station (schematic overview). (Source: Schmidt, Steinbach,
and Willert (2014).)

require lower pressure levels than the usual pressure in transport pipelines. The remote
access offers the operator a direct control of the pressure decrease. Note that control valve
stations represent subnetworks that consist of several basic elements; see Section 2.3.4 and
Section 2.4.1. The concrete layout depends on the considered network model. In our case,
we use Figure 10.4 (but see also Figure 2.7, which models the bypass explicitly). In any
case, control valve stations have a single inlet and a single outlet, so we consider entire
stations as arcs in the NLP model.

Control valve stations possess three discrete operation modes: active, bypass, and closed.
A closed control valve station acts like a closed valve. It blocks the gas flow and decouples
the adjacent nodes; see (10.31). A control valve station in bypass mode lets the gas flow
through the station in arbitrary direction and has no impact on pressure and temperature.
It is modeled like an open valve (10.30).

The remainder of this section describes an active control valve station, which reduces
the inflow pressure by a controllable amount, ∆a ∈ [∆a ,∆a]. The pressure reduction
works always in the positive direction of flow, i.e., from u to v; negative flow can only
occur in bypass mode.

Additional devices like station piping or measurement devices generate further (un-
controlled) pressure losses that are accounted for with inlet and outlet resistors.

Because of the Joule–Thomson effect (10.8), the pressure reduction is always accom-
panied by a temperature decrease. Large pressure reductions may cause excessive tem-
perature losses, which can lead to the undesirable process of gas hydrate formation. To
prevent this, control valve stations contain a gas preheater that keeps the gas temperature
above a given threshold value T a:v .

The control valve station is modeled as a subgraph; see Figure 10.4. When labeling
the control valve itself as subarc (1,2), the inlet resistor is subarc (0,1), the outlet resistor
is subarc (2,3), and the preheater is subarc (3,4). A complete active control valve station
thus consists of four subarcs, where subnode 0 is identified with u and subnode 4 with
v. Associated with every inner subnode are additional pressure, temperature, and heat

capacity variables: xa,i = (pa,i ,Ta,i , xheat-cap
a,i

), i = 1,2,3.

If the inlet resistor (0,1) = (u, 1) and outlet resistor (2,3) are linear resistors, they are
modeled based on (10.28),

0= ca,(i ,i+1)(xa,i , xa,i+1, xbase
a , xa,(i ,i+1))

=









cp-loss

a,(i ,i+1)
(qa , pa,i , pa,i+1)

cheat-cap

a,(i ,i+1)
(pa,i+1,Ta,i+1,Xa , xheat-cap

a,i+1
)

c jt

a,(i ,i+1)
(pa,i , pa,i+1,Ta,i ,Ta,i+1,Xa ,µJT,a,(i ,i+1), cp,a,i+1)








, i = 0,2,

(10.32)

with technical adjustments: The variable vector xa of the model (10.28) is split into xbase
a

and additional local variables xa,(i ,i+1) = µJT,a,(i ,i+1), i = 0,2, since the variables xa,(i ,i+1)

are specific for the inlet or outlet resistor, but mass flow and gas composition are associ-
ated with the station arc. In case of nonlinear resistors, the inlet and outlet resistors are
modeled based on (10.29) with similar adjustments.
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The control valve (1,2) is modeled by a simple linear constraint,

0= cp-decr

a,(1,2)
(pa,1, pa,2,∆a) = pa,1 − pa,2 −∆a .

Completed by the temperature decrease due to the Joule–Thomson effect, the control
valve model reads

0= ca,(1,2)(xa,1, xa,2, xbase
a , xa,(1,2))

=









cp-decr

a,(1,2)
(pa,1, pa,2,∆a)

cheat-cap

a,(1,2)
(pa,2,Ta,2,Xa , xheat-cap

a,2 )

c jt

a,(1,2)
(pa,1, pa,2,Ta,1,Ta,2,Xa ,µJT,a,(1,2), cp,a,2)








,

xa,(1,2) = (∆a ,µJT,a,(1,2)).

The gas preheater is actually a feedback controller that measures the gas temperature
at the station outlet to keep it above the threshold temperature T a:v by preheating the gas
at the station inlet, i.e., before pressure reduction. Since none of the decision approaches
described in Chapters 6 through 9 consider a preheater, the activity status is not known a
priori. Instead of modeling the feedback control, we obtain a simple model by considering
a heating of the outlet gas,

Ta:v =max(T a:v ,Ta,3). (10.33)

Since the maximum function is nonsmooth, we actually use the following smooth ap-
proximation of (10.33),

0= ca,(3,4)(pa,3, pv ,Ta,3,Ta:v ) =

�

pa,3 − pv

Ta:v −T a:v −
1
2

�7

∆T 2
a + ǫ+∆Ta

�

�

,

where ∆Ta = Ta,3 − T a:v and ǫ > 0 is a suitable smoothing parameter. If the resistors
of the station are linear, this model is logically equivalent to a feedback control model,
since the temperature does not influence any other quantity. However, the pressure loss at
nonlinear resistors depends on the inflow density at the resistor, which in turn depends on
the inflow temperature. A higher inflow temperature results in a smaller density and thus
a larger pressure loss at the resistor. The larger pressure loss at the resistor in a feedback
control model is compensated by the control valve in the simple model, as long as the
maximum pressure reduction of the control valve is not reached.

The complete model of an active control valve station with remote access then reads

0= ca(xu , xv , xa) =













ca,(0,1)(xu , xa,1, xbase
a , xa,(0,1))

ca,(1,2)(xa,1, xa,2, xbase
a , xa,(1,2))

ca,(2,3)(xa,2, xa,3, xbase
a , xa,(2,3))

ca,(3,4)(xa,3, xv , xbase
a )













, (10.34)

xa = (x
base
a , xa,1, xa,2, xa,3, xa,(0,1), xa,(1,2), xa,(2,3)).

10.1.9 Control valve stations without remote access

Some control valve stations lack the remote access featured by the previously described
control valves. Instead of controlling the pressure loss directly, a threshold pressure value
pset is preset in this case. Since changing this preset pressure requires manual adjustments
on-site, it is handled as a constant parameter in our model.
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0

u
re-in re-out cooler

s + 3

v
compressor machine

configuration

1 s + 1 s + 2

Figure 10.5. Active compressor group (schematic overview). (Source: Schmidt, Steinbach,
and Willert (2014).)

The state of a control valve station without remote access a = (u, v) depends on the
pressures inside the station in relation to the preset pressure. The control valve station
is active if the inflow pressure of the control valve lies above the preset pressure. If the
pressure level in the downstream network requires a higher pressure at the head v than
the threshold value, the control valve closes automatically. If the control valve does not
need to reduce the pressure, i.e., the pressure at the head is smaller than the preset pressure
threshold and the inflow and outflow pressures of the control valve are equal, the control
valve is in bypass mode.

The model of a control valve station without remote access uses the same station graph
as in Section 10.1.8. Note that, in contrast to control valves with remote access, the sta-
tion resistors and the gas preheater are not circumvented in bypass, but cause a pressure
reduction and temperature change.

Based on the given discrete decisions, a closed control valve is modeled by setting

pv = pa,1, qa = 0.

In case of an active control valve station, the pressure loss at the control valve∆a = p1− p2

and the flow qa must be nonnegative. Furthermore, the pressure at the head pu is fixed to
pset

a . The pressure reduction results in a temperature change due to the Joule–Thomson
effect.

The bypass mode is modeled by setting

∆a = 0, pv = pset
a .

The resistors and the gas preheater are modeled as described in Section 10.1.8.

10.1.10 Compressor groups

While control valve stations reduce the gas pressure, compressor groups a = (u, v) ∈ Acg

increase the gas pressure to compensate for the pressure loss caused by friction. Like
control valve stations, compressor groups represent subnetworks with a single inlet and
a single outlet. They also operate in the three discrete modes active, bypass, and closed,
where the closed mode is again modeled like a closed valve, (10.31), and the bypass mode
is again modeled like an open valve, (10.30). Here, the operation mode is always fixed
according to a solution candidate from a decision approach.

In the remainder of this section, we concentrate on the active mode, where the direc-
tion of flow must be nonnegative, qa ≥ 0. The compressor group is modeled as a subgraph
consisting of the following elements: several compressor machines that can be operated
in a number of arrangements called configurations, an inlet resistor and an outlet resistor,
and a gas cooler that reduces the outlet gas temperature if necessary. A compressor config-
uration is a serial connection of s subgroups (stages) of parallel compressor machines, to
be described in more detail below. As illustrated in Figure 10.5, these elements are mod-
eled as subarcs (i , i+1), i = 0, . . . , s+2, where subnode 0 is identified with u and subnode
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10.1. Component models 199

s + 3 with v. Associated with every inner subnode is a variable vector, xa,i = (pa,i ,Ta,i ),
i = 1, . . . , s + 2.

The models of all other elements described so far represent all physical or technical
bounds by variable bounds, e.g., limits of the gas velocity are represented by bounds of the
velocity variable at pipes. In contrast, the model of an active compressor group consists
of equality constraints c ,a and nontrivial inequality constraints c! ,a. The inequality con-
straints will be needed to describe operating ranges of individual compressor machines.
(The closed mode and bypass mode do not require inequality constraints.)

In the following we describe the subelements of an active compressor group. Subarc
(0,1) represents the inlet resistor,

0= ca,(0,1)(xa,0, xa,1, xbase
a , xa,(0,1)),

xa,(0,1) = (x
heat-cap
a,1 ,µJT,a,(0,1)),

and subarc (s + 1, s + 2) represents the outlet resistor

0= ca,(s+1,s+2)(xa,s+1, xa,s+2, xbase
a , xa,(s+1,s+2)),

xa,(s+1,s+2) = (x
heat-cap
a,s+2 ,µJT,a,(s+1,s+2)).

Both resistors are modeled identically to the resistors in a control valve station; see (10.32).
The gas cooler represented by the final subarc (s + 2, s + 3) is modeled like the gas pre-
heater in a control valve station, except that it keeps the outlet gas temperature below the
threshold value T a:v rather than above it:

Ta:v =min(Ta,s+2, T a:v ).

Again we approximate the nonsmooth equation with a smooth constraint,

0= ca,(s+2,s+3)(pa,s+2, pv ,Ta,s+2,Ta:v ) =

�

pa,s+2 − pv

Ta:v −T a:v +
1
2

�7

∆T 2
a + ǫ−∆Ta

�

�

,

where∆Ta = Ta,s+2 −T a:v , and ǫ > 0 is a suitable smoothing parameter.

10.1.10.1 Configurations

The configurations of a compressor group form a discrete set of possible choices. The par-
ticular choice to be considered in the NLP model is determined by the candidate solution
of a decision approach. Let us denote the subarcs associated with the given configuration
by (l , l + 1), l = 1, . . . , sa , where sa is the number of serial stages of the configuration.
Each stage l may contain ml compressor machines. For example, the schematic compres-
sor station in Figure 5.1(c) consists of two stages (sa = 2) and two compressor machines
each (m1 = m2 = 2). Finally, individual compressor machines at stage l of compressor
group a will be referred to by a(l , k), k = 1, . . . , ml , and the mass flow through machine
a(l , k) will be denoted as qa(l ,k). The total mass flow through the compressor group is

distributed over the parallel machines at every stage,

0= cflow-dist
a,l (qa, (qa(l ,k))

ml

k=1
) = qa −

ml∑

k=1

qa(l ,k), l = 1, . . . , sa .

Thus, the flows through the individual parallel machines do not have to be equal. In
general, the inlet values of p and T at the parallel machines at stage l + 1 are identical
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200 Chapter 10. The precise NLP model

and determined by the outlet values of stage l . The outlet pressures of parallel machines
are also identical; we denote their common value by pa,l+1. In contrast, the outlet tem-
peratures T out

a(l ,k)
are usually different, since individual compressor machines may work at

different operating points. The outlet temperatures then mix according to (10.13). Since
all gas streams have identical composition, the molar masses cancel each other and (10.13)
simplifies to

0= cmix-temp((qa(l ,k))
ml

k=1
,Ta,l+1, (T out

a(l ,k))
ml

k=1
)

= Ta,l+1

ml∑

k=1

qa(l ,k)−
ml∑

k=1

qa(l ,k)T
out

a(l ,k)

for all stages l = 1, . . . , sa .

10.1.10.2 Compressor machines

The actual pressure increase at a compressor group is realized by compressor machines.
Essentially two kinds of machines are commonly used: turbo compressors and piston
compressors. These two types are based on different mechanical principles, leading to
different physical and technical properties and to different applications (see Section 2.3.5.1
for details). We first describe basic features and principles that both compressor types have
in common.

The energy that is required to compress a certain mass of gas is expressed by the spe-
cific change in adiabatic enthalpy Had, which depends primarily on the compression ratio
pout/pin. For machine a(l , k), it is modeled by the constraint

0= cad-ent(Had,a(l ,k), pa,l ,Ta,l , pa,l+1, za,l , ma ,κa(l ,k))

=Had,a(l ,k)−
za,l Ta,l R

ma ra(l ,k)

��

pa,l+1

pa,l

�ra(l ,k)

− 1

�

, ra(l ,k) =
κa(l ,k)− 1

κa(l ,k)

.
(10.35)

The compression is assumed to be isentropic, more precisely it is adiabatic and reversible,
and κa(l ,k) denotes the isentropic exponent (see following subsection).

The power P that is required to increase the pressure depends on the mass flow q
through the machine, the specific change in adiabatic enthalpy Had, and the adiabatic ef-
ficiency ηad:

0= cpower(Pa(l ,k), qa(l ,k), Had,a(l ,k),ηad,a(l ,k)) = Pa(l ,k)−
qa(l ,k)Had,a(l ,k)

ηad,a(l ,k)

. (10.36)

Isentropic exponent The value κa(l ,k) used above depends on the gas state during the

entire compression process. Several approximate models of this isentropic exponent exist.
In our most detailed model choice, κa(l ,k) is an arithmetic mean value,

c isen-exp-mean(κa(l ,k),κ
in
a(l ,k),κ

out
a(l ,k)) = κa(l ,k)−

1

2
(κin

a(l ,k)+κ
out
a(l ,k)),

whereκin
a(l ,k)

andκout
a(l ,k)

are the respective isentropic exponents at the compressor inlet and

outlet, respectively. The latter are defined by (see Doering, Schedwill, and Dehli (2012)):

0= c isen-exp-def(κ, p,T , z, cp , m, pc,Tc)

= κ−
mcp z

mcpZp (z, p,T , pc ,Tc)−RZT (z, p,T , pc ,Tc)
2
,

(10.37)

&RS\ULJKW��������6RFLHW\�IRU�,QGXVWULDO�DQG�$SSOLHG�0DWKHPDWLFV�

127�)25�',675,%87,21
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where we use the abbreviations

Zp (z, p,T , pc ,Tc) = z − p
∂ z

∂ p
(p,T , pc ,Tc),

ZT (z, p,T , pc ,Tc) = z +T
∂ z

∂ T
(p,T , pc ,Tc).

The complete model of the isentropic exponent thus becomes

0= c isen-exp(pa,l ,Ta,l , za,l , pa,l+1,T out
a(l ,k) , zout

a(l ,k), xbase
a , x isen-exp

a(l ,k)
)

=





















c isen-exp-mean(κa(l ,k),κ
in
a(l ,k)

,κout
a(l ,k)
)

c isen-exp-def(κin
a(l ,k)

, pa,l ,Ta,l , za,l , cp,a(l ,k),in, ma , pc,a ,Tc,a)

cheat-cap(pa,l ,Ta,l ,Xa , xheat-cap

a(l ,k),in
)

c isen-exp-def(κout
a(l ,k)

, pa,l+1,T out
a(l ,k)

, zout
a(l ,k)

, cp,a(l ,k),out, ma , pc,a ,Tc,a)

cheat-cap(pa,l+1,T out
a(l ,k)

,Xa , xheat-cap

a(l ,k),out
)





















(10.38)

with additional variables

x isen-exp

a(l ,k)
= (κa(l ,k),κ

in
a(l ,k) ,κ

out
a(l ,k), xheat-cap

a(l ,k),in
, xheat-cap

a(l ,k),out
).

Here, za,l and zout
a(l ,k)

represent the respective compressibility factors at the compressor

inlet and outlet, which we need to compute κin
a(l ,k)

and κout
a(l ,k)

. The values cp,a(l ,k),in and

cp,a(l ,k),out are the corresponding specific isobaric heat capacities; these are part of the vec-

tors xheat-cap

a(l ,k),in
and xheat-cap

a(l ,k),out
, respectively.

A suitable simplified model for κ is obtained if we replace (10.37) by a linear function
of the temperature (see LIWACOM (2004)),

0= c isen-exp(Ta,l ,T out
a(l ,k) , x isen-exp

a(l ,k)
)

=

�

κa(l ,k)− 1.296+ 5.8824× 10−4(Tm,a(l ,k) −T0)

Tm,a(l ,k) −
1
2 (Ta,l +T out

a(l ,k)
)

�

, (10.39)

x isen-exp

a(l ,k)
= (κa(l ,k),Tm,a(l ,k)).

The coarsest model choice for κ is a constant value, such as κa(l ,k) = 1.296, which is ob-

tained from (10.39) with Tm,a(l ,k) = T0. This model is either formulated by the constraint

0= c isen-exp(κa(l ,k)) = κa(l ,k)− 1.296, (10.40)

or by replacing the variable κ with the constant value in all other constraints.

Temperature increase Due to the Joule–Thomson effect, the pressure increase at a
compressor machine a(l , k) causes a corresponding temperature increase for which several
empirical models exist (see LIWACOM (2004)): the isentropic equation model, the standard
model, and the RG1991 model. All these models can be interpreted as special cases of a
fixed-point iteration that is initialized with the temperature increase of an ideal gas (see
Schmidt, Steinbach, and Willert (2014)):

T out,i+1
a(l ,k)

= T out,ideal
a(l ,k)

z(pa,l ,Ta,l )

z(pa,l+1,T out,i
a(l ,k)
)
, T out,0

a(l ,k)
= T out,ideal

a(l ,k)
, i = 0,1,2, . . . .
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202 Chapter 10. The precise NLP model

The models mentioned above differ in the number of iterations and in the choice of the
initial iterate T out,ideal

a(l ,k)
. Here we consider only the standard model which uses a single

fixed-point iteration, i.e., T out
a(l ,k)

= T out,1
a(l ,k)

, and defines

T out,ideal
a(l ,k)

= Ta,l

�

pa,l+1

pa,l

�(κa(l ,k)−1)/(κa(l ,k)ηad,a(l ,k))

.

This results in the constraints

0= c temp-inc(T out,ideal
a(l ,k)

,Ta,l , pa,l , pa,l+1,κa(l ,k) ,ηad,a(l ,k),

zout,temp-ideal

a(l ,k)
, pc,a ,Tc,a ,T out

a(l ,k), za,l )

=











T out,ideal
a(l ,k)

−Ta,l

�

pa,l+1

pa,l

�(κa(l ,k)−1)/(κa(l ,k)ηad,a(l ,k))

ccompr(zout,temp-ideal

a(l ,k)
, pa,l+1,T out,ideal

a(l ,k)
, pc,a ,Tc,a)

T out
a(l ,k)

−T out,ideal
a(l ,k)

za,l /z
out,temp-ideal

a(l ,k)











.

(10.41)

Common machine model We are now ready to state the common part of the mod-
els for turbo compressors and piston compressors. Both types of compressor machines
involve the volumetric flow in their specific descriptions, Q = q/ρ. In addition to the
constraints described so far, we thus need a further constraint c eos to determine the gas
density at the machine inlet. Together with (10.35), (10.36), (10.38) or (10.39), and (10.41)
this results in the constraint

0= cbase
a(l ,k)(x

base
a , xa,l , xa,l+1, xbase

a(l ,k) ,T out,ideal
a(l ,k)

, zout,temp-ideal

a(l ,k)
)

=





























cad-ent(Had,a(l ,k), pa,l ,Ta,l , pa,l+1, za,l , ma ,κa(l ,k))

cpower(Pa(l ,k), qa(l ,k), Had,a(l ,k),ηad,a(l ,k))

c isen-exp(pa,l ,Ta,l , za,l , pa,l+1,T out
a(l ,k)

, zout
a(l ,k)

, xbase
a , x isen-exp

a(l ,k)
)

c temp-inc(T out,ideal
a(l ,k)

,Ta,l , pa,l , pa,l+1,κa(l ,k),ηad,a(l ,k),

zout,temp-ideal

a(l ,k)
, pc,a ,Tc,a ,T out

a(l ,k)
, za,l )

ccompr(za,l , pa,l ,Ta,l , pc,a ,Tc,a)

ceos(pa,l ,Ta,l ,ρ
in
a(l ,k)

, ma , za,l )





























(10.42)

with variables

xbase
a(l ,k) = (qa(l ,k), Pa(l ,k), Had,a(l ,k),ηad,a(l ,k),T out

a(l ,k) , za,l , zout
a(l ,k),ρ

in
a(l ,k), x

isen-exp

a(l ,k)
).

The complete set of constraints of every compressor machine then consists of (10.42) and
type-specific technical restrictions. Many of these additional restrictions are modeled by
least-squares fits based on measurements. For the resulting quadratic and biquadratic poly-
nomials we use the notation introduced in Chapter 2; see (2.45) and (2.46). The specific
model components of turbo compressors and piston compressors will now be discussed
in detail.

Turbo compressor Turbo compressors are designed for large throughput at moder-
ate compression ratios. From a mathematical point of view they are the most complex
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10.1. Component models 203

network elements besides pipes. More details on turbo compressors are given in Sec-
tion 2.3.5.1.

Every turbo compressor has an operating range representing the feasible working points.
A working point is a pair of volumetric flow rate and specific change in adiabatic en-
thalpy. The operating range is described by a characteristic diagram as in Figure 2.4(a).
This characteristic diagram is defined by the isolines of speed (2.47) and isolines of adia-
batic efficiency (2.48). In our NLP model, the isolines of compressor a(l , k) are given by
the respective constraints

0= c speed

a(l ,k)
(Had,a(l ,k), qa(l ,k),ρ

in
a(l ,k), na(l ,k))

=Had,a(l ,k) −χ

%

qa(l ,k)

ρin
a(l ,k)

, na(l ,k);Aspeed

a(l ,k)

&

,

0= ceff
a(l ,k)(ηad,a(l ,k), qa(l ,k),ρ

in
a(l ,k), na(l ,k))

= ηad,a(l ,k)−χ

%

qa(l ,k)

ρin
a(l ,k)

, na(l ,k);Aeff
a(l ,k)

&

,

where the volumetric flow rate Qa(l ,k) is expressed as qa(l ,k)/ρ
in
a(l ,k)

andχ is the biquadratic

polynomial from (2.46).
The curved lower and upper boundaries of the operating range are defined by the

isolines of the speed limits, na(l ,k) ∈ [na(l ,k), na(l ,k)]. To the left, the operating range of the

compressor machine is bounded by the surgeline,

0≤ c
surge

a(l ,k)
(qa(l ,k),ρ

in
a(l ,k), Had,a(l ,k)) =ψ

%

qa(l ,k)

ρin
a(l ,k)

;αsurge

a(l ,k)

&

−Had,a(l ,k).

To the right, the operating range is bounded by the chokeline,

0≤ cchoke
a(l ,k) (qa(l ,k),ρ

in
a(l ,k), Had,a(l ,k)) =Had,a(l ,k)−ψ

%

qa(l ,k)

ρin
a(l ,k)

;αchoke
a(l ,k)

&

.

For the quadratic polynomial ψ see (2.45). In summary, the complete model of a turbo
compressor reads

0= c ,a(l ,k)(x
base
a , xa,l , xa,l+1, xa(l ,k))

=









cbase
a(l ,k)
(xbase

a , xa,l , xa,l+1, xbase
a(l ,k)
)

c
speed

a(l ,k)
(Had,a(l ,k), qa(l ,k) ,ρ

in
a(l ,k)

, na(l ,k))

ceff
a(l ,k)
(ηad,a(l ,k), qa(l ,k),ρ

in
a(l ,k)

, na(l ,k))








,

0≤ c! ,a(l ,k)(xa,l , xa,l+1, xa(l ,k)) =

%

c
surge

a(l ,k)
(qa(l ,k),ρ

in
a(l ,k)

, Had,a(l ,k))

c choke
a(l ,k)
(qa(l ,k),ρ

in
a(l ,k)

, Had,a(l ,k))

&

.

The only additional variable besides xbase
a(l ,k)

is the shaft speed na(l ,k),

xa(l ,k) = (x
base
a(l ,k), na(l ,k)).
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204 Chapter 10. The precise NLP model

Piston compressor Piston compressors are designed to generate high compression ra-
tios with moderate throughput. This type of compressor machines appears less frequently
than turbo compressors; see again Section 2.3.5.1 for more details.

The characteristic diagram of a piston compressor is defined in the coordinates volu-
metric flow Q and shaft torque M ; it has a simple box shape as illustrated in Figure 2.4(b).
The volumetric flow through a piston compressor depends on the operating volume Vo,a(l ,k)

(the volume of gas that is compressed during one cycle) and the speed of the crankshaft
that drives the machine:

0= cvol
a(l ,k)(qa(l ,k),ρ

in
a(l ,k), na(l ,k)) =

qa(l ,k)

ρin
a(l ,k)

−Vo,a(l ,k)na(l ,k).

Since the shaft speed is bounded by na(l ,k) ∈ [na(l ,k), na(l ,k)], one obtains corresponding

limits of the volumetric flow as left and right boundaries of the operating range. The shaft
torque Ma(l ,k) is given by the constraint

0= c
torque

a(l ,k)
(ρin

a(l ,k), Ma(l ,k) , Had,a(l ,k)) =Ma(l ,k)−
Vo,a(l ,k)Had,a(l ,k)

2πηad,a(l ,k)

ρin
a(l ,k),

where ρin
a(l ,k)

denotes the gas density at the compressor inlet. For piston compressors, the

adiabatic efficiency ηad,a(l ,k) is a constant parameter. Depending on the specific machine

and the available technical data, the compression ability is limited in one of the following
ways:

0≤ c limit(pa,l , pa,l+1, Ma(l ,k)) =









ǫ− pa,l+1/pa,l ,

pa,l − pa,l+1 +∆p ,

M a(l ,k)−Ma(l ,k).

Here ǫ denotes an upper limit on the compression ratio,∆p an upper limit on the pressure
increase, and M a(l ,k) an upper torque bound.

In summary, a piston compressor is modeled by the constraints

0= c ,a(l ,k)(x
base
a , xa,l , xa,l+1, xa(l ,k)) =









cbase
a(l ,k)
(xbase

a , xa,l , xa,l+1, xbase
a(l ,k)
)

c torque

a(l ,k)
(ρin

a(l ,k)
, Ma(l ,k) , Had,a(l ,k))

cvol
a(l ,k)
(qa(l ,k),ρ

in
a(l ,k)

, na(l ,k))








,

0≤ c! ,a(l ,k)(xa,l , xa,l+1, xa(l ,k)) = c limit(pa,l , pa,l+1, Ma(l ,k)),

and the variables
xa(l ,k) = (x

base
a(l ,k), Ma(l ,k) , na(l ,k)).

10.1.10.3 Compressor drives

Drives deliver the power required by compressor machines. The drive d associated with a
compressor machine a(l , k) is given by a mapping σ from the set of compressors to the set
of drives, i.e., we have d = σ(a(l , k)) if drive d is associated to compressor a(l , k). While
every compressor is attached to a unique drive, some compressors may share a drive, i.e.,
a single drive may power several compressor machines. To simplify the exposition in this
section, we describe in detail only the case where every drive powers just one compressor
machine. The resulting model is easily extended to the general case.
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10.1. Component models 205

Drives are categorized into three different types based on the energy source and the
design principle: gas turbines, gas driven motors, and electric motors.

Electrical motors use electrical power. They form the set of electricity consuming drives
that we call �el in the following.

In contrast, gas turbines and gas driven motors use gas from the network as their
energy source. Specifically, they take their fuel gas from the inlet of the compressor group.
These drives constitute the set of gas consuming drives, �gas. The fuel consumption q fuel

d

of a drive d ∈�gas is modeled by

0= c fuel
d (q

fuel
d , bd , ma , Hc,a) = q fuel

d −
bd ma

Hu,a

;

see Section 2.3.5.4 for a more detailed description. Here, Hu,a = c Hc,a denotes the lower
calorific value, which differs from the (upper) calorific value Hc,a by a constant factor c
(see Cerbe (2008)). In practice, the fuel gas is taken from the network. To consider this
in a model with fixed and balanced supply and demand, the required fuel gas needs to be
known to adjust supply or demand accordingly. Since the required fuel gas is not known
a priori, its extraction from the network is not modeled. See Chapter 5 for more details.

The maximal power P d that a drive d can deliver is the upper bound on the power
Pa(l ,k) consumed by the connected compressor machine:

0≤ c! ,d (Pa(l ,k), P d ) = P d − Pa(l ,k), d = σ(a(l , k)). (10.43)

If the drive powers several machines, P d is the upper bound on the sum of the required
compressor powers. The value P d depends on the drive speed, which equals the speed of
the connected compressor, na(l ,k), since compressors are directly mounted on the drive

shaft. If several machines are connected, their speeds are therefore identical. In addition
to (10.43), every type of drive requires for its model a specific subset of the drive variables,
xd = (q

fuel
d

, Pa(l ,k), P d , bd ), and a specific subset of the equations, see Section 2.3.5.4,

0= c spec-ener

d
(bd , Pa(l ,k)) = bd −ψ(Pa(l ,k);α

energy

d
),

0= cbiquad-power

d
(P d , na(l ,k)) = P d −χ (na(l ,k),Tamb,a;Amax-power

d
),

0= cquad-power

d
(P d , na(l ,k)) = P d −ψ(na(l ,k);α

max-power

d
).

Here, αbd
,αP,d , and AP,d are the corresponding coefficient vectors or coefficient matrix

of the polynomials; see Section 2.3.5.4.

Gas turbines Gas turbines are modeled by the specific energy consumption rate bd ,
which depends on the power consumed by the compressor, Pa(l ,k), and a relation between

the power limit P d , the compressor speed na(l ,k), and the constant ambient temperature

Tamb,a . In terms of the above constraints the model reads

0= c ,d (xa(l ,k), xd ) =







c fuel
d
(q fuel

d
, bd , ma , Hc,a)

c spec-ener

d
(bd , Pa(l ,k))

cbiquad-power

d
(P d , na(l ,k))





 . (10.44)
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Gas driven motors Gas driven motors behave like gas turbines, except that the maxi-
mal power does not depend on the ambient temperature:

0= c ,d (xa(l ,k), xd ) =







c fuel(q fuel
d

, bd , ma , Hc,a)

c
spec-ener

d
(bd , Pa(l ,k))

cquad-power

d
(P d , na(l ,k))





 .

Note that the difference to (10.44) is the usage of cquad-power instead of cbiquad-power.

Electric motors These drives consume electric power rather than fuel gas. Depending
on the specific design, the ambient temperature may or may not have an influence on the
power limit. An electric motor d is thus modeled by one of the following constraints:

0= c ,d (xa(l ,k), xd ) =

�

c spec-ener

d
(bd , Pa(l ,k))

cquad-power

d
(P d , na(l ,k))

�

or

0= c ,d (xa(l ,k), xd ) =

�

c spec-ener

d
(bd , Pa(l ,k))

cbiquad-power

d
(P d , na(l ,k))

�

.

10.1.10.4 Complete compressor group model

A generic model of an active compressor group is highly complex even though the ac-
tive configuration is determined by the candidate solution of a decision approach. The
model needs to incorporate several compression stages with their respective compressor
machines and drives as well as the inlet and outlet resistors and the gas cooler. The con-
straints representing a compression stage l = 1, . . . , s can be summarized as

0= c ,a,(l ,l+1)(xa,l , xa,l+1, xbase
a , xa,(l ,l+1))

=













cflow-dist(qa, (qa(l ,k))
ml

k=1
)

cmix-temp((qa(l ,k))
ml

k=1
,Ta,l+1, (T out

a(l ,k)
)

ml

k=1
)

c ,a(l ,k)(x
base
a , xa,l , xa,l+1, xa(l ,k))

ml

k=1

c ,σ(a(l ,k))(xa(l ,k), xσ(a(l ,k)))
ml

k=1













,

0≤ c! ,a,(l ,l+1)(xa,l , xa,l+1, xa,(l ,l+1))

=

�

c! ,a(l ,k)(xa,l , xa,l+1, xa(l ,k))

c! ,σ(a(l ,k))(Pa(l ,k), Pσ(a(l ,k)))

�ml

k=1

,

xa,(l ,l+1) = ((xa(l ,k), xσ(a(l ,k)))
ml

k=1
).

With these definitions, the complete model of a compressor group reads

0= c ,a(xu , xa,v , xa) =













ca,(0,1)(xa,0, xa,1, xbase
a , xa,(0,1))

c ,a,(l ,l+1)(xa,l , xa,l+1, xbase
a , xa,(l ,l+1))

s
l=1

ca,(s+1,s+2)(xa,s+1, xa,s+2, xbase
a , xa,(s+1,s+2))

ca,(s+2,s+3)(pa,s+2, pv ,Ta,s+2,Ta:v )













, (10.45a)

0≤ c! ,a(xa) =
"

c! ,a,(l ,l+1)(xa,l , xa,l+1, xa,(l ,l+1))
#s

l=1
, (10.45b)

xa = (x
base
a , (xa,l )

s+2
l=1

, (xa,(l ,l+1))
s+1
l=0
). (10.45c)
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10.1.11 Variable bounds

Almost all variables of the NLP model have lower or upper limits (or both) resulting from
physical properties, technical restrictions, and legal requirements.

More restrictive bounds are typically given by technical limitations of the network el-
ements. For instance, the maximal pressure reduction of a control valve station depends
on the technical capabilities of the control valve, and the capabilities of compressor ma-
chines usually induce lower and upper bounds on the required power, specific change in
adiabatic enthalpy, and volumetric flow. Of course, the values of technical bounds are
determined by the specific design of every individual network device.

Finally, security prescriptions and legal requirements may induce even tighter limits.
For instance, the gas temperature is typically kept between 273.15 K and 318.15 K to
prevent critical processes like hydrate formation. Pipes are usually approved for a certain
maximum pressure, which induces corresponding pressure bounds at the tail and head.
Moreover, high-speed gas flow causes vibrations of the pipes. To reduce the resulting
noise and to prevent damage of the pipes, the gas speed is bounded by some suitable value,
depending on the pipe material.

Note that even wide physical bounds must be specified explicitly in certain cases to
prevent the solution algorithms from generating invalid iterates. For instance, the com-
pressibility factor cannot become smaller than zero in reality, but the AGA formula (10.4)
and Papay’s formula (10.5) can yield negative values of z for physically possible pressures
and temperatures outside the ranges of validity of these formulas.

10.2 Objective functions

The detailed description of individual model components is now complete. We turn to
the objective function before stating a complete NLP model. Depending on the specific
planning task under consideration, various objectives can be of interest; we will present a
few typical ones.

For the main problem considered in this book, the validation of nominations, any
feasible solution is satisfactory, and a constant objective is formally sufficient. However,
since we wish to obtain additional information if the NLP solver does not succeed in find-
ing a feasible solution, we actually use a relaxed problem formulation, where the objective
consists of minimizing a suitable slack norm; see Section 10.3. Moreover, a zero objec-
tive does not lead to a well-posed formulation, so we would need some proper objective
for regularization in any case. From an economic perspective, the most natural goal is to
minimize the cost of network operation, which is dominated by the energy costs of gas
consuming drives�gas and electrically powered drives�el. Gas coolers and gas preheaters

also consume a certain amount of fuel gas, but this can be neglected when compared to
the energy consumption of compressors. The resulting objective reads

f cost(q fuel
�gas

, P
�el
) =
∑

d∈�gas

ωd q fuel
d +
∑

d∈�el

ωd Pd ,

where q fuel
d

and Pd denote the mass flow and power consumed by drive d , andωd is a cost

coefficient.
If electric power is available in abundance and hence cheap, one might also be inter-

ested in minimizing only the consumption of fuel gas,

f fuel(q fuel
�gas
) =
∑

d∈�gas

q fuel
d .
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208 Chapter 10. The precise NLP model

A more ecological goal consists of minimizing the power consumption of compressors
rather than the monetary cost of this power,

f power(PAcg
) =
∑

a∈Acg

sa∑

l=1

ml∑

k=1

Pa(l ,k).

10.3 Relaxations

The component models presented in the preceding sections satisfy the standard smooth-
ness requirements stated at the beginning of this chapter. Hence standard NLP solvers
can be applied, and the models are well suited to validate candidate solutions of the deci-
sion approaches. If this yields a feasible solution, the given solution candidate has been
verified to be a valid approximation and has been adjusted to a more detailed model of
gas physics and technical devices. Unfortunately, the opposite outcome does not provide
much decisive information, since standard NLP solvers are local optimizers: if the prob-
lem is infeasible, they do not offer any hints to possible reasons, and they may fail to find
feasible solutions even if they exist. On the other hand, the problem is much too hard to
apply global solvers; otherwise we would not need the separate stages of decision approach
and NLP validation in the first place.

To gain additional information in the case of unsuccessful NLP runs, we introduce
slack variables σ+ and σ− and introduce relaxed versions of general NLP models like
(10.1) instead:

min
x,σ+ ,σ−

f relax(x,σ+,σ−)

s.t. ci (x)+σ
+
i −σ−

i
= 0, i ∈  ,

c j (x)+σ
+
j ≥ 0, j ∈! , (10.46)

σ+
i

,σ−
i

,σ+
j
≥ 0, i ∈  , j ∈! ,

x ∈ [x , x].

The new objective function f relax will be defined as a suitable norm of the slack variables,
so that we minimize some measure of infeasibility. In fact, the relaxed NLP is feasible as
long as x ≤ x , and the x component of any optimal solution to (10.46) is a feasible point
of the original problem (10.1) if and only if the objective value of (10.46) is zero, i.e., if
all slack variables vanish. If this is not the case, the nonzero slack components give some
indication which constraints are hard to satisfy in a heuristic sense.

The standard choice of f relax is the ℓ1-norm,

f relax(x,σ+,σ−) =
=

=(σ+,σ−)
=

=

1 =
∑

i∈ ∪!

σ+i +
∑

i∈ 

σ−.

If the objective value is positive, this choice of f relax tends to produce only a small num-
ber of nonzero slack variables, which may indicate what components or areas of the gas
network “cause” the infeasibility. This kind of information proves to be quite useful to
practitioners (see Chapter 11, too).

A second natural choice of the objective function is the ℓ∞-norm, which is obtained
by minimizing an upper bound σ on all slack variables,

f relax(x,σ+,σ−,σ ) = σ , σ+i ,σ−
i

,σ+j ≤ σ , i ∈  , j ∈! .
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This objective, however, does not offer any insight into possible reasons for infeasibility,
since a nonzero objective value tends to produce a large number of nonzero slack values.
For a discussion of the different norms see Section 11.6. The relaxation idea can be applied
to our gas network model in several ways. While feasibility of (10.46) is only guaranteed
when all constraints are relaxed, it is often sufficient to apply the relaxation to a suitable
subset. For example, a restriction to special types of network elements, like compressor
groups or pipes, can increase the chance to obtain useful information from the nonzero
slack variables. Similarly, a relaxation of the flow balance equations (10.10) can be useful
to detect obstructive, possibly implicit, flow restrictions.

10.4 A concrete validation model

In this section, we fix a single instantiation of the family of NLP models that have been
presented in the preceding sections. This model is called ValNLP in the following and is
used for the computational experiments in Chapter 12.

For choosing the concrete model variants, often a compromise between physical and
technical accuracy on the one hand and solvability of the model on the other hand is nec-
essary. Most of the model choices correspond to the component models of compressors
and pipes. For pipes, we choose a model that is similar to the pipe models of the decision
approaches, i.e., we use

⊲ the quadratic approximation (10.21) of the pressure loss along a pipe,
⊲ the mean pressure approximation, see (10.24),
⊲ the smooth friction approximation (10.18), and
⊲ the AGA formula (2.5).

For compressors and drives, we use a model incorporating

⊲ the complete machine models with characteristic diagrams of turbo and piston com-
pressors,

⊲ the complete drive model, see Section 10.1.10.3, and
⊲ a constant isentropic exponent, see (10.40).

We also choose to not include any mixing constraints for the gas parameters. In particular,
this concrete model does not handle mixing of calorific values, but is applied to flow nom-
inations derived from power nominations assuming an average calorific value as described
in Section 5.3.3.

To be precise, ValNLP is given by

min
x,σ+,σ−

f relax(x,σ+,σ−) (10.47)

s.t. (10.10) for all u ∈V ,

(10.25), (10.26) for all a ∈Api,

(10.28) for all a ∈Alin-rs,

(10.29) for all a ∈Anl-rs,

(10.30) for all a ∈Ava (a open),a ∈Asc,a ∈ Acg ∪Acv (a in bypass),

(10.31) for all a ∈Ava (a closed),a ∈Acg ∪Acv (a closed),

(10.34) for all a ∈Acv (a active),

(10.45) for all a ∈Acg (a active),

x ∈ [x , x].
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The variable vector x consists of all variables required by the constraints. In addition, all
nonlinear constraints of (10.47) are relaxed, leading to according slack variable vectors σ+

and σ−. Finally, we remark that we use the ℓ1-norm as the measure of infeasibility in the
objective function f relax(x,σ+,σ−).
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