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Abstract The main goal of our efforts described in this book consists of solving
the problem of validation of nominations in gas networks, i.e., deciding whether
a feasible solution exists for a given set of boundary conditions represented by a
nomination. However, it turns out that the meaning of “feasible” is not self-
evident. This is due to a multitude of reasons, ranging from the accuracy of
problem data over subtle differences between our models to tractability of op-
timization problems. In the current chapter we elaborate on these points and try
to clarify precisely in what sense and how well the mathematical methodology
presented can distinguish feasible from infeasible solutions.

This chapter treats a number of topics addressing feasibility issues. Following the process
from modeling the gas network and its operation to a solution in our models, we high-
light the different stages where feasibility might be a concern. We start with Section 11.1
by discussing important differences between reality and our mathematical optimization
models, as well as the practical interpretation of the results. Section 11.2 then addresses
the interrelation of modeling accuracy and requirements on the availability and accuracy
of model data. We then turn to the various mathematical difficulties concerning feasibility
arising in our planning problems and how they are addressed by considering a hierarchy
of abstract and computational models. This is discussed in Section 11.3 with a focus on
the relations of these models to each other. We then present selected results comparing
our nonlinear program (NLP) validation model with the commercial simulation pack-
age SIMONE in Section 11.4. In Section 11.5, we explain how infeasible results of the
ValNLP (see Chapter 10) are postprocessed in order to give the user hints for possible rea-
sons of the infeasibility. Finally, the last section is devoted to provably infeasible problem
instances: Section 11.6 presents techniques for analyzing infeasibility in relaxed models.

11.1 Feasible network operation

“What is feasible network operation?” is one of the most fundamental questions of this
book. This question needs to be answered in order to define the capacity of a gas network.
It is thus behind every modeling and algorithmic decision that has been made. There is
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212 Chapter 11. What does “feasible” mean?

a precise (and trivial) answer/definition: a network operation is feasible if all technical,
legal, and contractual conditions of the given gas network are satisfied. In this section we
highlight several issues arising from this definition and give connections with the different
parts of this book.

The first issue is that, naturally, the above definition implicitly includes a load flow
situation and external conditions like temperatures, etc. In short-term planning, the load
flow and external conditions must be known, or sufficiently accurate forecasts must be
available, to generate suitable network operation plans. Since we concentrate on long-
term planning in this book, the above data are not available in our context: we consider
fictitious future nominations, where load flows and external conditions are assumed to be
constant over a fixed time period. For the evaluation of capacities, a complete probability
space of such nominations has to be generated using statistical data from the past (see
Chapter 13) in combination with methods to include contractual data and forecasts for
points for which no statistical data are available (see Chapter 14); see also Chapter 4 for a
description of the approach currently used in practice.

An important second issue is that network operation is transient in practice, i.e., dy-
namic over time. The most detailed evaluation of capacities would thus consider transient
computations. However, this would require us to replace the probability space of nomi-
nations with a probability space of dynamic load flow situations, each consisting of

⊲ a dynamic profile of load flows and external conditions over the considered time period,
⊲ an initial state of the system, and
⊲ an optimization engine that can handle the transient computations.

It is entirely unclear whether it is possible to avoid the “curse of dimensionality” in such
an attempt and whether sufficiently reliable probabilities can be generated from the data
available. Moreover, the network sizes currently solvable by transient methods that han-
dle discrete decisions are small (see, e.g., Domschke et al. (2011)); simulation and opti-
mization without discrete decisions can currently handle larger sizes (see Ehrhardt and
Steinbach (2005); Steinbach (2007)), but would need improvements as well. See also the
discussion in Section 5.3.1.

As already discussed in Section 5.3.1, we therefore concentrate on stationary models
and computations. While this is currently the only way to go, it has the drawback that
certain temporal effects cannot fully be represented in stationary models. Examples are
as follows:

⊲ In contrast to a stationary model, entry and exit flows do not have to be balanced.
⊲ It is sometimes possible to operate a turbo compressor with a working point left to

its surgeline. This is realized by redirecting part of the compressor outflow back to its
inlet, which results in a circular gas flow whose temperature is increased repeatedly; see
Section 2.3.5.1. There is no adequate stationary model for this process: it requires an
artificial relaxation of the stationary operating range of the turbo compressor, while
the dynamic operating range is never violated in practice.

⊲ Temporarily storing gas in a pipeline, the so-called linepack, cannot be represented
in stationary models. It is, however, of great practical importance for gas network
operation, since the pipes themselves can store a significant amount of gas and thus act
as a large buffer to smoothen short-term demand peaks.

Consequently, stationary models are usually considered as being more conservative,
since transient operation offers more flexibility. Moreover, a stationary network state is
a special case of a transient state in which the load flows and external conditions do not
change over time and the network reaches a steady state. However, it is possible that a
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11.2. Availability and accuracy of model data 213

sequence of nominations, whose corresponding stationary models are all feasible, cannot
dynamically be operated. Usually, however, stationary planning provides practically re-
liable results. It is an important goal of future research to develop transient methods for
short-term planning.

In order to focus our discussion of feasibility, we from now on consider the case of a
stationary computation with a given nomination.

The third issue connected with the feasibility definition concerns the choice of the
model for computations. All considered models are based on the physical laws, usually
the Euler equations, which describe gas behavior and flow. However, as is obvious from
the discussion in Chapter 2, several approximations and simplifications have to be made.
For instance, the choice of one-dimensional (1d) Euler equations instead of a 3d fluid
dynamical model is essential to be able to perform computations on networks larger than
a few pipelines. However, the 1d Euler equations are usually considered as reasonably
exact for practical computations on larger networks. Other model choices are based on
computational reasons—this is discussed in detail in Chapters 6–10. Note that these facts
imply that in practice there is nothing like a natural “master model” for the whole network
from which one can then derive approximations.

As a consequence, any approach has to deal with the model gap between reality and the
actually chosen model. This, of course, has implications on the definition of feasibility,
which is with respect to the chosen model. This model can describe reality more or less
accurately. In this book, we take the approach to define a base model, against which we
validate all other models. Thus, we define a network operation as feasible if we can find a
solution of the validation NLP (ValNLP, see Section 10.4) using computed/given discrete
decisions that has a zero objective value. See Chapter 12 for more information of the
performance with respect to this definition.

As a final issue with respect to feasibility, we mention the limited numerical accuracy
with which all computations are performed. Although not easy in detail, the handling of
this issue is standard.

11.2 Availability and accuracy of model data

Theoretically it would be possible to formulate a microscopic network model that ac-
counts for the full physics of all the individual chemical species contained in natural gas
and for the full three-dimensional geometry of the pipeline network, including special
devices such as valves, compressors, control valves, filters, measurement instruments, etc.

Clearly, such an extremely detailed model would be of little practical use. First, it is
impossible to gather reasonably accurate values of all the required physical and technical
data: just think of the spatially varying heat conductance of the soil around the pipelines,
or of technical network parameters that change slowly over time, because of usage condi-
tions or wearout, like the roughness of inner pipe walls or the efficiency of compressors.
Second, even if accurate and complete physical and technical data could be provided for
(typically large) real-life networks, a numerical simulation or optimization matching the
accuracy of such a model would be far beyond the capabilities of today’s software and
algorithms.

Fundamental considerations like these apply to most complex technical systems: mod-
elers always face the difficulty of providing a reasonable degree of detail (or model accu-
racy) in the sense that the value of information drawn from the model by computational
simulation and optimization outweighs the cost of setting up the model (complete with
required data) plus the cost of performing the computations. In the case of gas networks,
it turns out that
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214 Chapter 11. What does “feasible” mean?

Figure 11.1. Overview of optimization models: abstract models are above the dashed line,
computational models below the dashed line.

⊲ it is rather difficult to find a properly balanced degree of modeling detail;
⊲ the degree of detail depends heavily on the intended use (on-line simulation, short-term

planning, mid-term planning, . . .) and on the algorithms used;
⊲ even models used for on-line simulation are much coarser than the “ideal” microscopic

model mentioned above;
⊲ providing and maintaining the data of a real gas network requires a substantial effort

even for relatively coarse models;
⊲ the accuracy of results is typically limited by the accuracy of the data, not the accuracy

of algorithms, even for relatively coarse models.

The discussion in this chapter is primarily focused on deterministic network data. All
mid-term and long-term planning problems involve inherently stochastic data such as fu-
ture supplies, discharges, and temperatures, which are the subject of Chapter 13.

11.3 How “feasible” are solutions of our models?

When we speak about feasibility of solutions, we have to consider both feasibility with
respect to a certain model and feasibility with respect to reality. For a proper understand-
ing, we need to take a closer look at the interrelations of the models in our hierarchy (see
Figure 11.1). Our models basically need to address the following combination of difficult
mathematical aspects:

⊲ nonlinearity,
⊲ nonconvexity,
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11.3. How “feasible” are solutions of our models? 215

⊲ nonsmoothness,
⊲ PDEs or ODEs for gas dynamics,
⊲ continuous controls,
⊲ discrete decisions.

All these aspects arise in the hypothetical microscopic network model mentioned be-
fore, which would have the form of a (nonlinear and nonconvex) nonsmooth discrete-
continuous control problem with a system of gas dynamics PDEs in three spatial dimen-
sions. All aspects still arise in a practical “reference” model, the next-lower level in Fig-
ure 11.1, which differs from the ideal model in that gas dynamics are only modeled in
the pipes and only in one spatial dimension, and in that macroscopic technical models are
used for all other network elements. As a side issue we would like to point out that even
for such a transient one-dimensional model, theoretical results on existence and unique-
ness of solutions for arbitrary networks are still unavailable to the best of our knowledge;
for some of the most general studies see Colombo, Herty, and Sachers (2008), Colombo
et al. (2009), and Gugat et al. (2012).

In the stationary case considered here, the 1d PDE actually reduces to a spatial ODE.
Even in gas network simulation (see Králik et al. (1988); Záworka (1993)) one typically
uses a priori discretizations of the PDEs (or ODEs), which in our context leads to a non-
smooth mixed-integer nonlinear program (MINLP) model, the lowest level in the upper
part of Figure 11.1. This is still an abstract model, in the sense that we do not actually use
it directly for computations. However, all our computational models are derived from
it by further approximations, simplifications, and smoothings of the above mathemati-
cal difficulties; see lower part of Figure 11.1. (If applicable, further intermediate models
in the derivation are described in the context of each computational model.) The first
four computational models feature substantial simplifications to obtain tractable formu-
lations of the overall discrete-continuous optimization problem; see Section 5.6 for an
overview and Chapters 6–9 for details. In contrast, the validation NLP model ValNLP
(Section 10.4) does not include discrete decisions but retains as much of the nonlinear
physics as deemed necessary to check real-life feasibility with sufficient accuracy. For our
purpose, this means that the degree of detail and the resulting solution accuracy are com-
parable to that of existing simulation packages (see Section 11.4 for a comparison), which
have been trusted for years by practitioners to be reliable approximations of reality.

The fundamental difficulty in assessing real-life feasibility is that the different models
in the hierarchy are not quantitatively comparable: although some of the differences are
proper mathematical approximations for which error estimates exist (such as discretiza-
tions of the spatial ODE), other model differences just consist of different equations de-
fined on different spaces (i.e., sets of variables) for which natural error measures do not
even exist. The same point applies to comparisons of the four first-stage models with
each other and with the ValNLP model: they all live on different spaces of variables, pos-
sibly including discrete variables, so that a natural difference measure for solutions is not
clear. Thus, for comparing the results of our models with each other and for interpreting
their implications in real life, we need to rely on experience with these models in practical
application.

For these reasons, we consider a candidate solution from any of the four approaches
as feasible with respect to our mathematical framework if fixing its discrete decisions and
adding variables of the (finer) validation NLP model ultimately leads to a feasible point: a
ValNLP solution with slack norm zero; see Section 10.3 and Section 5.6. Of course, there
remains some unavoidable “grey area”: a chance that an NLP-feasible point is slightly
infeasible in real life. Such a grey area exists in simulation-based planning as well. Since
the comparison with state-of-the-art simulation software is the best possible benchmark
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216 Chapter 11. What does “feasible” mean?

available to us, we basically try to produce decisions that are close to practically accepted
simulation-based decisions.

If all four approaches fail to produce a candidate solution, due to divergence in the
RedNLP and MPEC approaches or due to timeout in the MILP and sMINLP approaches,
we cannot make a decision on feasibility and the runs are repeated with different param-
eter settings.

Note that the MILP and sMINLP approaches are actually capable of detecting infea-
sibility of their respective models, i.e., we may obtain a decisive negative answer to the
feasibility question. This will be discussed in the last section of this chapter.

11.4 NLP validation vs. network simulation

The fundamental difficulty that our abstract and computational models are not quantita-
tively comparable (see Section 11.3) also applies to the relation of the ValNLP model with
simulation models employed in commercial packages.

Ideally, the ValNLP model should reflect the real network behavior as closely as pos-
sible. In principle, this can be achieved by setting up an inverse problem, i.e., an opti-
mization problem that estimates the model parameters from the mismatch between the
given network model and measurements of the real system. However, measurements of
stationary network states cannot be obtained during regular operation, and are therefore
very expensive. On the other hand, to estimate parameters from dynamic measurements,
we would have to develop a proper transient network model and to solve a corresponding
dynamic inverse problem, both of which are way beyond the scope of the work described
here. As an artificial reference substituting the real system we have hence chosen a partic-
ular simulation package, namely SIMONE version 5.73 [SIMONE], which is frequently
used by Open Grid Europe GmbH (OGE) and other network operators.

In the following we shall demonstrate that, even when our NLP uses the model equa-
tions given in the SIMONE documentation, small but nonnegligible differences between
the results of the NLP and SIMONE occur. These differences can be attributed to several
factors:

⊲ the overall numerical solution algorithms differ,
⊲ differential equations are discretized using different schemes or grids,
⊲ model variants like the pipe friction model may differ in minor aspects,
⊲ data handling and the accuracy of data processing differ, and
⊲ SIMONE possibly performs floating point computations in single precision arithmetic

whereas all our computations are performed in double precision.

To test how well SIMONE and the various submodel variants of our NLP match,
in particular the submodel variants used in ValNLP, we have performed a large number
of comparisons on individual network elements. The tests cover all element types of
Chapter 2, with multiple sets of design parameters and flow situations for each of them.
An illustrative subset of these tests is discussed below.

For every comparison we fix all inflow quantities of the network element under con-
sideration. Additionally, we fix all control quantities in case of active devices. It can be
shown that all other quantities are thereby uniquely determined.

As it turns out, choosing suitable test sets of design parameters and flow situations is
hard. Due to the nonlinearity of the model equations, small differences of intermediate
values caused by the above-mentioned factors can get amplified during computation. Even
worse, for the pipes one can create extreme cases with almost arbitrarily large (relative)
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11.4. NLP validation vs. network simulation 217

Table 11.1. Parameters of test set for pipes.

Quantity Tested values Unit

L 0.01, 0.1, 0.9, 46.0 km
D 150, 310, 405, 1185 mm
k 0.006, 0.02, 0.1, 0.5 mm
hout −500, 0, 500 m

pin 3.9, 15.3, 53.8, 74.4 bar
Tin 288.15, 298.15, 308.15, 318.15 K
Q0 50, 250, 500, 750 1000Nm3/h

differences in the final results. This happens, e.g., when considering the outflow pressure
of very long pipes with small diameter.

We wish to perform a comparison that covers real-life network elements and flow
situations as well as possible on the one hand and that avoids extreme cases on the other
hand. In case of testing pipes we therefore proceed as follows. For the northern H-gas
network of OGE (see Section 1.6), we take the distributions of pipe length, diameter, and
roughness, and choose as test parameters the respective quantiles at 10%, 35%, 65%, and
90%. For the outlet elevation hout, we choose the values −500 m, 0 m, and 500 m, the
inlet elevation being fixed at 0 m. The resulting sets of individual parameters are given
in Table 11.1. The entire test set is obtained by taking all 12288 combinations of the
individual pipe and flow parameters. Test sets of other network elements are generated
in a similar manner. In addition to pipes, we will also address control valves here. More
detailed results including all other element types are given in Schmidt, Steinbach, and
Willert (2014).

For every type of network element, several quantities of the computed solutions are
compared, such as outflow pressure and temperature. For every quantity x, we measure
the absolute deviation between the NLP and SIMONE results xNLP and xSim, the relative
deviation, and (if applicable) the relative deviation with respect to the quantity’s change
from inflow to outflow, ∆x = xin − xout:

dabs(x) = |xNLP − xSim| ,

drel(x) =
|xNLP − xSim|

|xSim|
,

drel(∆x) =
|∆xNLP −∆xSim|

|∆xSim|
.

If multiple model variants exist in both the NLP and SIMONE, several choices are
compared. For instance, in the case of pipes we obtain four model variants by combin-
ing the AGA formula (10.4) and Papay’s formula (10.5) for the compressibility factor
z(p,T ) with two variants for the Euler equations: the approximation (10.25) and dis-
cretized ODE (10.20). Each of these four variants is used in all 12288 test cases. Finally
we exclude all test cases where one of the methods fails to produce a result and all combi-
nations with an impossible outlet elevation, i.e., with |hout| > L. Average deviations are
then computed on the remaining test cases. In all instances, the settings (like compressibil-
ity factor or friction model) of the NLP and SIMONE are matched as closely as possible.
Note that this will yield poor matchings in certain cases: while both the NLP and SI-
MONE offer the AGA formula and Papay’s formula for the compressibility coefficient,
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218 Chapter 11. What does “feasible” mean?

Table 11.2. Average deviations of pipe outflow pressure (bar).

NLP model choice z(p,T ) Sample size dabs(pout) drel(pout) drel(∆p)

Approximation AGA 2419 0.11 0.86% 5.8%
Approximation Papay 2651 0.10 0.94% 5.9%
ODE AGA 2658 0.046 0.31% 3.2%
ODE Papay 2659 0.050 0.33% 3.3%

Table 11.3. Average deviations of pipe outflow temperature (K).

NLP model choice z(p,T ) Sample size dabs(Tout) drel(Tout) drel(∆T )

Approximation AGA 2419 1.1 0.38% 16%
Approximation Papay 2651 1.0 0.35% 15%
ODE AGA 2658 0.22 0.075% 4.6%
ODE Papay 2659 0.15 0.051% 2.9%

for instance, SIMONE always uses an ODE model for the pipe flow. The approximation
model of our NLP (which is actually used in ValNLP) has no counterpart and is expected
to be less accurate than the ODE model of SIMONE. In cases like this, the measured aver-
age deviations provide a reasonable indication of the absolute quality of the less accurate
model.

The computed average deviations are listed in Table 11.2 and Table 11.3; Figure 11.2
displays logarithmically scaled histograms of the absolute deviations of pressure and tem-
perature for the model variant with ODE discretization and Papay’s formula. The stan-
dard deviation of the distribution of absolute pressure differences is 0.24 and the leftmost
bin contains 2574 of 2659 samples (97%). The standard deviation of the distribution of ab-
solute temperature differences is 0.29 and the leftmost bin contains 2330 of 2659 samples
(88%).

The deviations between the NLP and SIMONE with discretized ODEs are smaller
than with the approximating model. This is to be expected, since the ODE discretization
is more accurate than the approximation in both cases. Specifically, SIMONE applies an
implicit integration method for the partial differential equations (10.15), based on algo-
rithms presented in Králik et al. (1988) and Záworka (1993). Nevertheless, the absolute
deviation of pressures of 0.1 bar using the approximation models is still sufficiently accu-
rate for most of the planning tasks addressed in this book. In these cases, one can use the
approximation models in order to achieve reduced computation times, as is being done in
the ValNLP. If, however, this accuracy was expected to be insufficient, one could switch
to the discretized ODE model.

Some pressure and temperature profiles along an exemplary pipe are plotted in Fig-
ure 11.3 and Figure 11.4. These graphs show the outflow pressure and temperature de-
pending on the normal volumetric flow along the pipe for an inflow pressure of 74.4 bar
at 318.15 K with a soil temperature of 284.15 K. The figures on the right show enlarged
details of the most interesting area of the figures on the left, as indicated by the dashed
box.

In Figure 11.3 we see that the ODE discretizations of the NLP and SIMONE agree
quite well for the pressure profile while the less accurate approximation model of ValNLP
is qualitatively similar, but with a larger absolute difference, as expected. This observation
is in line with the average deviations given in Table 11.2 and Table 11.3.
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Figure 11.2. Logarithmic histograms for the tested pipes and the model choices “ODE
discretization” and “Papay’s formula.”
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Figure 11.3. Outlet pressure (bar) of a pipe (L = 46 km, D = 1185 mm, k = 0.006 mm,
slope s = 0.01) vs. normal volumetric flow (1000 Nm3/h), computed using Papay’s formula in
SIMONE v5.73 ( ), ODE discretization ( ), and ODE approximation ( ). Figure on the right
is a zoom of the dashed frame in the left figure.

In Figure 11.4 we see that the ODE discretizations of the NLP and SIMONE agree al-
most as well for the temperature profile, except for excessive deviations at very small flow
values: here SIMONE yields drastically increasing temperatures that cannot be physically
correct, which indicates numerical problems or a bug in the tested version. Spot tests sug-
gest that this has been fixed in the release 5.83 of SIMONE. The approximation model
of ValNLP is again qualitatively similar. It shows larger absolute differences, but only for
medium and large flow values. At small flow values up to 400000 Nm3/h, some curvature
information gets apparently lost when approximating the energy equation (10.17c), and
the convex section of the temperature graph does not show up as with the ODE discretiza-
tion. This could be a reason for the larger average deviations between the approximation
model of ValNLP and SIMONE as reported in Table 11.3. Note, however, that even these
larger average deviations of about 1K lie within the range of data accuracy, since more ac-
curate forecasts of environmental and soil temperatures required for planning processes
are rarely available. Moreover, a small number of tests that we performed with two dif-
ferent versions of SIMONE indicate that the deviations between these two releases of the
same software lie also in the same order of magnitude.

&RS\ULJKW��������6RFLHW\�IRU�,QGXVWULDO�DQG�$SSOLHG�0DWKHPDWLFV�

127�)25�',675,%87,21



220 Chapter 11. What does “feasible” mean?

0 2000 4000
280

300

320

normal volumetric flow

o
u

tl
e
t
te

m
p
e
ra

tu
re

0 200 400 600 800
280

285

290

295

300

normal volumetric flow

o
u

tl
e
t
te

m
p
e
ra

tu
re

Figure 11.4. Outlet temperature (K) of a pipe (L= 46 km, D = 1185 mm, k = 0.006 mm,
slope s = 0.01) vs. normal volumetric flow (1000 Nm3/h), computed using Papay’s formula in
SIMONE v5.73 ( ), ODE discretization ( ), and ODE approximation ( ). Figure on the right
is a zoom of the dashed frame in the left figure.

Table 11.4. Average deviations of control valve outflow temperature (K).

z(p,T ) Sample size dabs(Tout) drel(Tout) drel(∆T )

AGA 54 0.74 0.25% 34%
Papay 54 0.094 0.032% 4.1%

Let us finally consider control valves. Here we fix the inflow pressure, inflow tempera-
ture, flow value and controlled pressure reduction, and we compare outflow temperatures.
Again, the compressibility factor can be modeled by the AGA formula (10.4) or Papay’s
formula (10.5). In both the NLP and SIMONE, the temperature loss is computed by the
detailed model of Joule–Thomson; see (10.8). Note that there exists a model difference
in the case of zero flow, where the “outflow” temperature is set to the soil temperature in
SIMONE, whereas it is set to the inflow temperature in the NLP. Thus, we consider only
test cases with nonzero flow. In total, there are 108 test cases, all of which produce results
with both software packages. The resulting average deviations are listed in Table 11.4.

The differences between the AGA and Papay models are striking: despite the fact that
all other quantities and model aspects are identical, the mean deviations with the AGA
formula are about eight times as large as the values with Papay’s formula. Moreover, the
standard deviation of the absolute error for Papay’s formula is less than 10−2 whereas the
standard deviation for AGA is 0.63. This strongly indicates differences in the implemen-
tation of the AGA formula.

Although the pressure reduction is fixed, there also exists an average absolute deviation
of 5× 10−5 bar between the NLP and SIMONE. The NLP reproduces the fixed value cor-
rectly; hence, we must conclude that in this case either the internal accuracy of SIMONE
is lower or the API of SIMONE rounds output values to a precision of roughly 10−4 bar.
The second explanation seems more likely.

In summary, the validation procedures that we have carried out confirm that our
models actually match the level of detail and accuracy provided by SIMONE (and pre-
sumably also by other commercial simulation packages). However, the NLP results must
always be expected to differ from simulation results even if the models are based on the
same equations, since different algorithms and different implementations are involved.
Moreover, there is no systematic way of eliminating the remaining differences since the
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source codes of the simulation packages are inaccessible. Our numerical experiments have
shown that the same observations also apply to the comparison of different releases of SI-
MONE. Results are always roughly comparable, but often not exactly; see Willert (2014)
and Schmidt, Steinbach, and Willert (2014).

11.5 The interpretation of ValNLP solutions

Our general workflow for solving the problem of validation of nominations consists of
two stages (see Section 5.6). The decision approaches produce solution candidates with
discrete decisions and an approximative description of the pressure-flow situation in the
network. This discrete-continuous solution is used to fix the discrete decisions of all con-
trollable network devices. In addition, the given solution is used to initialize the variables
of the ValNLP model. For this, the situation can be divided into two distinct cases. First,
there are variables (like pressure on vertices and flow on arcs) that appear both in the
decision approaches and in the validation NLP. For these variables, the solution candi-
dates are used directly to initialize the ValNLP variables. Second, the ValNLP model has
additional variables that do not appear in the models of the decision approaches. These
variables are initialized in a heuristic way depending on the given pressure and flow values
of the solution candidate, the constraints of the ValNLP model, and suitable constants.

As it is described in Section 10.3, the original ValNLP is relaxed by using slack vari-
ables for a certain (sub)set of constraints, and the ℓ1-norm of the slack variable vector is
minimized. When solving the relaxed ValNLP model, three different outcomes are pos-
sible:

1. The ValNLP model is solved to (local) optimality with a slack norm value of zero.
In this case, we have provably found a feasible solution to the underlying nonsmooth
and nonlinear mixed-integer feasibility problem.

2. The ValNLP model is not solved to (local) optimality.
3. The ValNLP model is solved to (local) optimality with a slack norm value larger than

zero.

The last two cases require further consideration. If no (locally) optimal solution could be
found at all, we can only state that the solution candidate could not be validated by the
ValNLP model. This can happen for various reasons, such as improper starting points,
poor problem scaling, ill-conditioning, etc.

If we have found a (locally) optimal solution with a slack norm value larger than zero,
there is more information available. Obviously, we have not validated the given solution
candidate from the decision approach. But in contrast to the second case, we can inter-
pret the infeasibility by taking a closer look at the slack variables that do not vanish in
the ValNLP solution. In practice, minimizing the ℓ1-norm of the constraint violation
typically leads to a small number of nonvanishing slack variables, i.e., the set

% := {i ∈  | σ+i > 0 or σ−
i
> 0}∪ { j ∈ ! | σ+j > 0}

has small cardinality (see Section 11.6.1). The sets  and! denote the index sets of equal-
ity constraints and inequality constraints; see Chapter 10. With the indices in % , we can
then identify the network elements u ∈ V or a ∈ A at which the constraint violations
appear. This gives the practitioner a first idea where reasons of infeasibility might be lo-
cated. However, the slack variable value should be used for the infeasibility analysis, too.
Unfortunately, the pure value does not give a reasonable tool for the analysis if we do not
know the unit in which it should be interpreted. For instance, a slack variable value of
10 is of different importance if it is interpreted in bar or in MW. Finally, the situation
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222 Chapter 11. What does “feasible” mean?

becomes even more complicated by the fact that many constraints in the ValNLP model
are reformulated in order to obtain better numerical behavior. For instance, the original
constraint for the pressure loss at resistors (see 10.1.5),

pu − pv =
8ζa
π2D4

a

qa |qa |

ρa,in

,

might be reformulated as

ρa,in (pu − pv ) =
8ζa
π2D4

a

qa |qa| ,

to avoid the density variable in the denominator of the right-hand side. A relaxed version
might then take the form

ρa,in (pu − pv )−
8ζa
π2D4

a

qa |qa |+σ
+−σ− = 0, (11.1)

having the unit barkg/m3 which cannot be interpreted by a practitioner in a direct man-
ner.

These considerations are the reason why we reinterpret the nonvanishing slack vari-
able values in order to allow an infeasibility analysis based upon the ValNLP solution, as
follows:

1. definition of a set of physical quantities together with units in which the ValNLP
solution should be interpreted, e.g., pressure in bar and flow in kg/s;

2. identification of vertices and arcs whose constraints are not satisfied exactly;
3. reinterpretation of nonvanishing slack variables and reporting the reinterpreted val-

ues to the practitioner.

An intuitive way for the reinterpretation is to compute a slack value with the unit
chosen in step 1 by rearranging the unrelaxed form of the violated constraint until a term
with the appropriate unit is isolated. Relaxation variables are then reapplied and, based on
the solution of the ValNLP, values for the relaxation variables are computed. In constraint
(11.1), for instance, the recomputed values σ̄± of the slack variables satisfy the equation

p∗u − p∗v −
8ζa
π2D4

a

q∗a |q
∗
a |

ρ∗
a,in

+ σ̄+− σ̄− = 0,

yielding σ̄± = (σ±)∗/ρ∗
a,in

(where superindices “∗” denote values of the ValNLP solution).

These slack values have the unit bar, which can be directly interpreted by a practitioner.
In the following, this approach is referred to as the direct approach.

The direct approach has some significant drawbacks. First, it is not always possible
to apply it to an arbitrarily chosen quantity in step 1. This is the case for implicitly
stated constraints. Second, consider the ValNLP model of pipes. As it is also the case
for other network elements, the model involves a vector of constraints, c : �n →�m , i.e.,
c(x) = (ci (x))

m
i=1

. Thus, it might be the case that there are nonvanishing slack variables

σ+
j

or σ−
j

for different constraints c j (x), j ∈ & ⊂ {1, . . . , m}, of the pipe model. If we

apply the direct approach, we obtain a reinterpreted slack value for every violated con-
straint c j (x), j ∈& , and all reinterpreted values can have different units. For the modeler

of the problem, this information might be useful since it corresponds to a level of detail
that the modeler can handle. However, this is not the case for a practitioner who has no
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11.5. The interpretation of ValNLP solutions 223

knowledge about the concrete model formulation. Thus, the practitioner is interested in
a single interpretable value for each network element that has a constraint violation. For
instance, the practitioner might ask the question: “What is the error in terms of gas flow at
the arc, i.e., how much more or less gas has to flow through it, in order to achieve a feasible
solution?” For taking such requirements of practitioners into account, we do not apply
the direct approach. Rather, we solve small optimization problems for every network
element with nonvanishing slack variables in a post-processing step. In the following, we
describe these optimization problems for arcs a = (u, v). The concrete formulations for
vertices are completely analogous.

Let ca, (xa , xu , xv ) and ca,! (xa , xu , xv ) be the component model of the network ele-
ment a described in Chapter 10. That means, ca, and ca,! are all constraints required
to model the arc a and xa , xu , and xv are the vectors of variables required by these con-
straints. Thus, the variable for the quantity selected in step 1 has to be contained in xa , xu ,
or xv . Let x̂ ∈� denote this single variable. With this notation, the post-processing opti-
mization problem for arc a reads

min
xa ,xu ,xv

|x̂ − x̂∗| (11.2a)

s.t. ca, (xa , xu , xv ) = 0, (11.2b)

ca,! (xa , xu , xv )≥ 0, (11.2c)

xu − x∗u = 0, except for x̂ , (11.2d)

xv − x∗v = 0, except for x̂ , (11.2e)

xa − x∗a = 0, except for x̂ , (11.2f)

x̂ ∈ [x̂, x̂]. (11.2g)

Thus, all variables of the arc and its incident nodes are fixed to the values defined by the
ValNLP solution, except for the quantity x̂ whose deviation to its value in the solution of
the validation NLP is minimized. The constraints (11.2d) and (11.2e) fix the tail and head
variables xu and xv , respectively, except for the quantity represented by x̂ if it is part of
the node variable vectors. In analogy, constraint (11.2f) fixes the arc variables except for x̂ ,
if the latter is an arc variable. The objective consists of finding the minimum deviation of
the variable x̂ with respect to its value x̂∗ in the ValNLP solution. For reasons of clarity,
let us again take a look at problem (11.2) for the concrete case of a being a pipe and the
case in which x̂ is chosen to be the flow Q0,a through the pipe. The constraints (11.2b),
(11.2c), and simple bounds (11.2g) are the same as for the pipe in the ValNLP model and
constraints (11.2d)–(11.2f) fix all variables of the post-processing problem to the values of
the ValNLP solution except for the flow variable Q0,a that is part of xa . Thus, if (11.2)
is feasible, the value Q∗∗

0,a in the solution of the post-processing problem has the minimal

distance to the flow value Q∗
0,a of the ValNLP solution. The answer to the question “How

much more or less gas has to flow through the pipe in order to achieve a feasible solution?” is
thus |Q∗∗

0,a −Q∗
0,a |.

Unfortunately, the approach of solving problems of type (11.2) in post-processing
may fail when the infeasibility cannot be expressed in the quantity x̂ . For example, this
may happen at a compressor group, when the working point of a compressor machine
lies above and to the right of the feasible operating range in the characteristic diagram.
Thus, the required compression ratio as well as the flow through the compressor are too
high with respect to the capability of the machine. Obviously, the infeasibility cannot
be measured in only one of the quantities compression ratio or flow. In such cases, the
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infeasibility of (11.2) has to be reported to the practitioner with the consequence that the
situation has to be analyzed by inspection.

Nonetheless, the described approach turned out to be very useful in practice, since
in most of the cases it is possible to give the practitioner an interpretable value of the
constraint violations and their location in the network.

11.6 Analyzing infeasibility in a first stage model

In the previous section we have seen how to analyze near-feasible but not provably fea-
sible solutions in the second stage, the ValNLP model. As described at the beginning of
Section 11.5, we need to fix the discrete decisions to use this model. In the current sec-
tion, we deal with the case where none of the first stage approaches can find a feasible
discrete-continuous solution to start the ValNLP.

The mixed-integer linear program (MILP) (Chapter 6) and sMINLP (Chapter 7) mod-
els are solved by global methods: in exact arithmetic and with unlimited computing time,
these methods either find a global minimum or they detect that no solution can exist. This
offers the advantage of proving infeasibility of a nomination with respect to each of the
two mixed-integer models—up to the chosen accuracy and if no timeout occurs, of course.
In contrast to the RedNLP (Chapter 8) and MPEC (Chapter 9) approaches, which do not
provide any information in case of divergence, we may thus obtain a decisive negative
result.

Moreover, the MILP model is a relaxation of a certain intermediate MINLP model so
that infeasibility can be proven for this abstract model whose accuracy is close to that of
the nonsmooth MINLP (see Figure 11.1). Thus, we can actually detect infeasibility, again
of course with some “gray area” that depends on the respective accuracy of the model.

The impossibility to find feasible discrete decisions can originate from different sources:
First, the input data might be defective (as mentioned in Section 11.2) due to typing er-
rors, outdated data, or misunderstandings in format. On the other side, there could be
modeling and implementation issues. In the validation of a nomination, there might be
too much flow to fit through the pipes (a “real,” physical infeasibility). During the vali-
dation of a booking (see Section 3.2.1), we could encounter an infeasible nomination, but
should the booking really be declined because of that? We might ask, “how far away”
from feasibility is the nomination? Additionally, there is still the difference between the
stationary and dynamic viewpoint (see Section 11.1), and we might be able to “repair”
the nomination by pulling an interruptible contract (see Section 3.3.2) which was not in-
corporated from the beginning. In topology planning (see Section 15.4), we are explicitly
asked how one can extend the network to turn a given infeasible nomination into a fea-
sible one—a question for which an understanding of the location of the infeasibility is
highly advantageous.

From a practitioner’s perspective it is unsatisfactory to obtain a negative result with-
out further explanation: it would be valuable to know why the problem is infeasible or,
to pose it more positively, how it could be made feasible with—in some sense—minimal
modifications.

There are different approaches how to analyze infeasibilities in models; for an overview
in the LP case see Greenberg and Murphy (1991). The authors state

An isolation means to find a portion of the model, preferably of minimal di-
mensions [sic], that contains the source of infeasibility. A diagnosis is an iso-
lation that is meaningful—that is, consistent with the model’s syntax, rather
than an arbitrary portion that is as difficult to interpret as the original
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11.6. Analyzing infeasibility in a first stage model 225

problem. A diagnosis is good if it leads to the correction of the error in a
reasonable amount of time.

Following this definition, our goal here is to develop a good diagnosis. Therefore, we
present a “tool kit” with different problem-specific methods, which can give usable in-
formation not only on the model but the network. First, we could compute the small-
est distance to feasibility (SDF) in a suitable but, in principle, arbitrary measure. These
methods will include, on the one hand, changes of the network, and on the other hand,
modifications of the nomination. The distance is determined by solving a relaxed version
of the base model with an MILP solver in a black box fashion. The second approach uses
“isolation”: We compute the smallest part of the network which is still infeasible. This is
the concept of irreducible infeasible subsystems (IISs). In the following, we will present
the different possibilities and practical implementations of these approaches.

As implied above, we have to choose a model on which our analyses can be based,
and, since the ability to detect infeasibility should be given, we can use the MILP or the
sMINLP. Although it is possible for most of the above-mentioned analyses to transfer the
key ideas to other formulations for validation of nominations, we will present our models
based on the MILP for ease of description.

11.6.1 Smallest distance to feasibility

For this approach, we ask how we can change as little of the problem as possible and
obtain a feasible solution. This is done by introducing slack variables to the chosen vali-
dation of nominations model. These slacks will relax different aspects of the formulation,
represented by certain constraints, proposing either changes of the network or modifica-
tions of the nomination. The aim, and therefore the objective function, is to minimize
the deviance from the original model. To demonstrate the principle of the models and
to illustrate the flexibility of different validation of nominations models, we will use the
following generic model to describe the validation of nominations problem:

min f (q , p, r )

s.t. g (q , p, r ) = a, (pipes)

h(q) = qnom, (flow conservation)

kactive(q , p, r )≤ c1, (active elements)

kpassive(q , p, r )≤ c2, (further passive elements)

q ≤ q ≤ q , (flow)

p ≤ p ≤ p, (pressure)

r ≤ r ≤ r , (other variables)

r ∈�m ×�n , (partly binary)

where f , g , h, kactive, and kpassive are functions, and a, qnom, c1, and c2 are vectors with the

associated right-hand sides and of appropriate dimension. As usual, q and p denote the
flow and pressure, respectively, while r is a wildcard for every other variable.

Throughout the next sections, we will present some exemplary computational results
to give a better understanding of the strengths and weaknesses of the different models.
These results are the means of 50 computations with different nominations, respectively,
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and were computed on an Intel i3 Dual-Core, 3.20GHz, 8GB with a time limit of 24 h
and an ℓ1 objective function, unless otherwise stated. As a solver for the models, we used
GUROBI 4.6. The examined nominations have no input data errors, but are “physically”
infeasible, due to rather large flow amounts. The network in our numerical experiments
corresponds to the H-gas north network (see Figure 1.5). It is medium-scale and consists
of 31 sources, 129 sinks, 432 inner nodes, 452 pipes, 6 compressor stations, 23 control
valves, 34 valves, and 9 resistors. The topology of the network is the same as that of the
test set HN-SN used in Chapter 12.

Selection of the objective function As noted above, we are looking for a diagnosis of
the infeasibility, ideally with a physical interpretation. For the network changing mod-
els, this is given by the concept of an extension (see also Section 15.4) of the network. An
extension is a new or remodeled network element which helps realize a previously infeasi-
ble nomination. Herewith, every nonzero slack value corresponds to a network element
which must be altered.

In the different models, the objective function is presented as an arbitrary norm of the
slack variable vector σ . We have implemented and tested models using the ℓ0-“norm” (ℓ0

is not homogeneous and therefore not a norm by definition) and the ℓ1-norm; thus, we
minimize the number of nonzero entries and the sum of the absolute values of the entries,
respectively. It would be equally possible to use, for example, the ℓ2-norm, although the
resulting model would no longer be linear. Anyway, in most cases the desired goal should
be to minimize the number of affected elements and hence the usage of ℓ0. Unfortunately,
the ℓ0-case is NP-hard to solve; see problem [MP5] in Garey and Johnson (1979), even for
a pure LP. Therefore, we also investigated the ℓ1-norm, which leads to more easily solv-
able models and gives—in most cases—a decent alternative. Especially in the nomination
modifying models, the ℓ1 solution is often very sparse. In a certain sense, the ℓ1-norm is
also the best convex “relaxation” of the ℓ0-“norm”: The ℓp -norm, given by

‖x‖ p =
"
∑

|xi |
p
#1/p

,

is nonconvex for 0 < p < 1, but convex for p ∈ [1,∞], and it holds that
limpց0‖x‖p = ‖x‖0. For a detailed discussion about the relation between ℓ0- and ℓ1-

norms see Elad (2010). Besides, the ℓ1-norm has the additional property of minimizing
the value of the slack variables (in contrast to the ℓ0-solution) which might be, depending
on the application, a desired feature.

Note that (theoretically) the objective value is zero if (and only if) the original model
has a feasible solution, since this means every entry in σ is zero. Unfortunately though,
it might be possible that this is not true in reality: First, in every model we have to cope
with numerical difficulties, and second, when changing the bounds for pressure or flow
variables, this leads to different linearizations of the pipe modeling in the MILP, since
the bounds are used as outer supporting points (see Section 6.2). This problem could also
lead to some other undesired effects: Since we work with a given model accuracy, wider
bounds mean probably many more supporting points, which in turn leads to much bigger
models. So even feasible nominations could become unsolvable or we observe seemingly
contradictory solutions. It is therefore advisable to test the feasibility of a nomination
first, and not depend on the characterization of the objective function value.
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Flow bounds The first possibility for a network modification is a relaxation of the
given flow bounds:

min ‖σ q‖

s.t. g (q , p, r ) = a,

h(q) = qnom,

kactive(q , p, r )≤ c1,

kpassive(q , p, r )≤ c2,

q −σ q
1 ≤ q ≤ q +σ q

2 ,

p ≤ p ≤ p ,

r ≤ r ≤ r ,

r ∈�m ×�n ,

σ q ≥ 0.

The objective function here is a suitable norm of the slack variable vector σ q , where σ q

is the concatenation of σ q
1 and σ q

2 .
The physical interpretation of this model is, How much wider do the flow bounds

need to be to operate the network? This model is fairly well solvable for our instances; un-
fortunately it is more or less useless in a real-world application. The explicit flow bounds
are provided by rather wide technical capacities of pipes and simply not the limiting fac-
tor in a network, and therefore not responsible for the infeasibility, as the computational
results emphasize: Out of 50 nominations, 50 models were still infeasible, with a mean
solution time of 214.2 seconds. Thus, the only case in which this model might be useful
is for detecting wrong input data.

Pressure bounds The next model relaxes the pressure bounds in a similar fashion:

min ‖σ p‖

s.t. g (q , p, r ) = a,

h(q) = qnom,

kactive(q , p, r )≤ c1,

kpassive(q , p, r )≤ c2,

q ≤ q ≤ q ,

p −σ p
1 ≤ p ≤ p +σ p

2 ,

r ≤ r ≤ r ,

r ∈ �m ×�n ,

σ p ≥ 0.

Here, a “good” solution might be found, meaning that there is actually a pressure bound
given for the validation of nominations that is too tight, since the pressure bounds are
part of contracts. In this case, the interpretation of the solution would be asking the
contracting party to adjust the requested pressure bound or, if the pressure is bounded by
technical components, to extend their operating capacity.

In the computational experiments, 36 nominations were infeasible in the above model,
5 reached the time limit (24 hours), and 9 had a solution with a mean of 21.4 bar difference
(in sum) to the original bounds and 2.6 affected nodes.
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Pipes Another possibility is to target the pipes in the network:

min ‖σπ‖

s.t. g̃ (q , p, r,σπ) = a,

h(q) = qnom,

kactive(q , p, r )≤ c1,

kactive(q , p, r )≤ c2,

q ≤ q ≤ q ,

p ≤ p ≤ p ,

r ≤ r ≤ r ,

r ∈ �m ×�n ,

σπ ≥ 0,

where g̃ is a relaxed pipe modeling, depending on the slack variables σπ. Here, the ac-
tual modeling details are a little more involved since we have some additional equations
for the pipe description, as presented below. Preferably, our model will be easy to inter-
pret, so the solution should be transferable to a network extension (e.g., a looped pipe or
a different diameter of the pipe). For that reason, we allow the pressure drop on a pipe
a = (u, v) to be lower or higher than on the actually built pipe in the pressure-flow situa-
tion. Starting with Eq. (2.24),

p2
u e−S − p2

v = Λφ (qa)
e S − 1

S
e−S ,

we use

p2
u e−S − p2

v +σ
π
+ −σ

π
− = Λφ (qa)

e S − 1

S
e−S ,

sgn
"

p2
u e−S − p2

v

#

= sgn

�

Λφ (qa)
e S − 1

S
e−S

	

.

Note the additional constraint, concerned with the flow direction (disregarding possible
differences in height): We prevent the flow from going from the lower to the higher pres-
sure node, since this could not be realized just by adding more pipes.

In the computational experiments, the solution of 3 nominations were aborted due
to memory issues and 47 were solved to optimality, with an average of 5.9 affected pipes
and 72.5 difference in the pressure drop in sum (measured in bar2). The same models
but with an ℓ0 objective function lead to the following comparison: only 8 nominations
could be solved optimally, and the number of changed pipes is minimum 1, maximum 12,
and average 4.4. The average computation time was 182.3 minutes (including nonoptimal
solutions) and 128.1 minutes for the ℓ1 objective function.

Combination It is possible for all previously described models that they are still in-
feasible, with the real-world interpretation that it is just not enough to build new pipes
alone, or to widen certain pressure bounds. To overcome this issue, we can combine the
models, i.e., introduce slack variables on all mentioned conditions at once. This yields
a model which allows corresponding violations at the same time and with directly trans-
ferable interpretation as the mentioned ones. Unfortunately, the models would become
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much harder to solve, so there must be some sort of trade-off. Of course, the size of the
network plays a major role. In the computational experiments, all 50 instances were not
solvable due to memory issues, although for networks smaller as the one considered here,
the combination might be possible.

If the models are combined, one must incorporate weights for the different slack vari-
ables in the objective function—on the one hand, to actually weight the preference for
the different violations (a pressure bound violation might be cheaper to eliminate than
to replace a pipe) and on the other hand to even out the different orders of magnitude
of the slack variables: Since, for example, flow and pressure, and thus their bounds and
the slack variables, are measured in different units, but are represented in the model by
real numbers, there should be some sort of a conversion in the penalty (e.g., a violation
of 1 m3/s is not as bad as a violation of 1 bar).

Active elements The last model aimed at an addition of pipes, but an extension of
the network could also mean new active elements. Therefore we introduce the following
model; the idea here is to allow each nonpipe element (i.e., compressor groups, control
valves, resistors, short cuts, and valves) in the network model to work as an ideal com-
pressor or control valve (i.e., change the pressure by an arbitrary amount):

min ‖σ p‖

s.t. g (q , p, r ) = a,

h(q) = qnom,

kactive(q , p, r )≤ c1+σ
p ,

kpassive(q , p, r )≤ c2,

q ≤ q ≤ q,

p ≤ p ≤ p ,

r ≤ r ≤ r ,

r ∈ �m ×�n ,

σ p ≥ 0.

Again, this model should serve as a basic concept. The reason to choose the existing ele-
ments as a location for these ideal compressors and control valves is that existing elements
are cheaper to extend than to build completely new elements. This remodeling is done by
adding a slack variable to the particular delimiting pressure relation. For short cuts this is
(6.5), for valves Eq. (6.11c) and Eq. (6.11d), for resistors either (6.8) or (6.10). Compressor
groups and control valves are handled by relaxing the bypass valve (see Section 5.1.6 and
Section 5.1.7, respectively).

For instance, the modeling of a valve a = (u, v) becomes

(pv − p u)sa + pv − pu −σ
p
c ≤ pv − p u ,

(p u − pv )sa + pu − pv −σ
p
r ≤ p u − pv ,

with slack variables σ p
c for the compressor and σ p

r for the control valve, put in the respec-
tive correct position.

In the computational experiments, 25 nominations remained infeasible, 1 reached the
time limit with a feasible solution, and 24 were solved optimally with an average of 3.1
ideal compressors and 1.7 ideal control valves.
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Flow amount So far, we have considered models that would induce changes of the net-
work; we are now switching to nomination modifying models. An application for these
could arise after an unsuccessful validation of a booking: As mentioned earlier, we would
ask “how infeasible” a nomination is. Thus, the next model tries to find the “closest
smaller” feasible nomination with respect to the given one, by allowing a smaller supply
and demand at the entries and exits, respectively:

min ‖qnom −σ q‖

s.t. g (q , p, r ) = a,

h(q) = σ q ,

kactive(q , p, r )≤ c1,

kpassive(q , p, r )≤ c2,

q ≤ q ≤ q ,

p ≤ p ≤ p,

r ≤ r ≤ r ,

r ∈�m ×�n ,

0≤ σ q
u ≤ qnom

u for all u ∈V+,

qnom
u ≤ σ q

u ≤ 0 for all u ∈V−,

σ q
u = 0 for all u ∈V0.

The objective function value—in relation to the total supplied flow amount—should give
a pretty good idea of how to answer our question.

Of the 50 nominations, 48 were solved to optimality, while 2 were aborted due to
memory limits. In the minimum case, 0.8% of the original flow amount fed into the
network had to be reduced (“almost feasible”), in the maximum case 25.1% (“highly in-
feasible”), with an average of thereby affected nodes of 9.1.

Supplier The studied nominations are potential situations with limits given by con-
tracts (see Section 3.2). These contracts might contain additional agreements which per-
mit the network operator to manipulate the incoming flows. With the next model, we
allow the flow at entries to be reallocated to other entries:

min ‖σ q − qnom‖

s.t. g (q , p, r ) = a,

h(q) = σ q ,

kactive(q , p, r )≤ c1,

kpassive(q , p, r )≤ c2,

q ≤ q ≤ q ,

p ≤ p ≤ p,

r ≤ r ≤ r ,

r ∈�m ×�n ,

σ q
u ≥ 0 for all u ∈V+,

σ q
u = qnom

u for all u ∈V− ∪V0.

In our numerical experiments, 3 nominations were infeasible, 2 reached a limit, and
45 were solved to optimality with an average of 1139.6 relocated flow units (1000 Nm3/h)
and 19.3 affected nodes.
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There are still other models imaginable, built in a similar fashion, which can be used to
analyze infeasibility. The presented ones should demonstrate that it is possible to design
models tailored to particular needs and interests (e.g., the aforementioned infeasibility
in the validation of a booking). So, when deciding which model to use, the first question
should be, What will the obtained information be used for? Otherwise, it might be a good
idea to compare the solutions from several models. It is possible (and likely) that different
models have ambiguous solutions (i.e., indicating other parts of the network as the source
of infeasibility), hence, we cannot speak of “the” bottleneck. However, if multiple models
highlight the same part, an actual congestion for the nomination was presumably found
(see also Section 4.2.3.5).

11.6.2 Infeasible subsystems

The next basic approach is to search for a subsystem as small as possible of the corre-
sponding MILP which is still infeasible. This is the concept of an IIS of the given MILP;
see Chinneck (2008) for more details. The computation of IISs for MILPs is done in a
straightforward way by removing constraints of the MILPs while maintaining infeasibil-
ity, with certain selection rules; see Guieu and Chinneck (1999) for details. This algorithm
is implemented in most of the commercial MILP solvers, e.g., GUROBI and CPLEX.

What is left open after the computation is that, in fact, one wants an infeasible sub-
network, not a subsystem of the MILP. Thus, we identify network elements by their
describing constraints (where one element can have more than one constraint). In the
next step, we build the desired infeasible subnetwork by including every element in the
network for which at least one constraint or an associated variable (e.g., the flow vari-
able on a pipe) is part of the IIS. One of the properties of this subnetwork is that it is
connected (see Joormann (2013)), hence, this network can be processed further to obtain
more detailed information. By doing so, we gain a considerable limitation of the search
area for manual search (e.g., for defective data) and, more generally, this method could be
combined with the experience of network planners, or the SDF models in Section 11.6.1.
The problem is that if the IIS is large, there is almost no informative value.

Although it is not always possible for MILPs in the considered dimensions to compute
an irreducible infeasible subsystem within reasonable time, one can get a sufficiently good
reducible infeasible subsystem (IS) with the same advantages as an IIS. The disadvantage,
however, in contrast to the SDF models, is that there is no statement implied on how to
resolve the infeasibility, or what the “reason” for the infeasibility is.

For our numerical experiments, we could compute 20 IISs; 30 nominations reached
the time limit. The contained constraints translate to a minimum of 7 edges, 8 nodes and
a maximum of 468 edges, 446 nodes (compared to 524 edges and 592 nodes in the original
network).

This approach is not easily transferred to a basic model other than the MILP: In any
model with a nonlinear part, it is nontrivial to compute an IIS, e.g., today’s local solvers
could report a model to be infeasible, but by adding one constraint, the solver may find a
feasible point and the status turns to feasible.

11.6.3 Identifying bottlenecks of the network

The identification of a transport congestion or bottleneck of the network would be highly
beneficial for a number of reasons, e.g., for a readily given extension decision (see Sec-
tion 15.4). Furthermore, bottlenecks are used in the generation of worst-case scenarios
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232 Chapter 11. What does “feasible” mean?

(see Section 4.2.3). Unfortunately, mathematically defining a bottleneck of a gas network
is not straightforward, let alone computing it.

The standard network approach of computing a min-cut does not work here, as the
computational experiments for the flow bound model (Section 11.6.1) emphasize. Be-
sides, the problem of both presented approaches, i.e., SDF models and IISs, is the depen-
dence on the nomination, while we are actually looking for a bottleneck of the network.
For an arbitrary model, one always needs a right-hand side and that is precisely the nom-
ination. We will now sketch different attempts to break this dependence and we will see
that it is not easily overcome.

Intuitively, we could try to use only lower and upper bounds instead of a fixed nomi-
nation. The problem with this approach is that for real-world data, the network is not so
strict, meaning that, from our experience, we always end up with a feasible model.

In a second attempt, we could perform the presented analyses for multiple nomina-
tions and compare the results. But, unfortunately, there are most likely no overlappings
of the affected elements, especially due to ambiguous solutions.

Instead of one nomination, we could try to regard several nominations at once (e.g.,
representatives of temperature classes). The first shortcoming of this idea is that it is not
applicable for IISs, and for SDF with nominations qnom

1 , . . . , qnom
N , there would arise a

system

g (qi , pi , ri ) = a for all i = 1, . . . ,N ,

h(qi ) = qnom
i for all i = 1, . . . ,N ,

kactive(qi , pi , ri )≤ c1 for all i = 1, . . . ,N ,

kpassive(qi , pi , ri )≤ c2 for all i = 1, . . . ,N ,

q ≤ qi ≤ q for all i = 1, . . . ,N ,

p ≤ pi ≤ p for all i = 1, . . . ,N ,

r ≤ ri ≤ r for all i = 1, . . . ,N ,

ri ∈�
m ×�n for all i = 1, . . . ,N ,

with copies of the constraints for every nomination (note that qi , pi , and ri are still vec-
tors). This is problematic because there already is a little luck involved if the elementary
models can be solved, let alone a model N times the size.

Instead, it may be worth looking at the following empirical approach. We start with
a given set of nominations (feasible and infeasible) and ask how their status changes if the
network elements are modified successively (scaling up or down the pressure interval at
a fixed node, changing a pipe diameter, etc.). Then, we count how many infeasible nom-
inations became feasible and vice versa. After such computations we could state that if
a smaller (pressure, diameter, etc.) value does not lead to many more infeasible nomi-
nations, then the examined element is not a bottleneck. Similarly, if a larger value does
not lead to many more feasible nominations, the element is not a bottleneck (at least not
alone). Finally, if a larger value does lead to many more feasible nominations, the corre-
sponding element is a bottleneck.

For this last approach a lot of individual computations need to be performed. How-
ever, since these are only ordinary validations of a nomination, they can be carried out
much faster than SDF computations (see Section 11.6.1 as an indication for SDF computa-
tional times and Section 12.2 for validation of nomination computations). The computa-
tional effort can be justified by the independence of only a single nomination, although it
should be clear that some sort of a preselection of the regarded elements is necessary; for
a real-world network it is not possible to observe every element individually (nor every
combination of these).
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