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EFFICIENT STOCHASTIC PROGRAMMING TECHNIQUES FOR
ELECTRICITY SWING OPTIONS

MARC C. STEINBACH AND HANS-JOACHIM VOLLBRECHT

ABSTRACT. We consider the valuation of contracts of electrical energy supply with optionalities. After dis-
cussing appropriate stochastic programming models and presenting especially suited solution algorithms, a set
of price scenarios is simulated based on a probabilistic model of the electricity spot market price at the EEX.
We determine empirically upper and lower bounds for the stochastic optimization over any scenario tree ob-
tained by reduction techniques. Furthermore, we introduce constraints restricting all scenarios to have identical
contract exercise amounts cumulated over various fixed subperiods. Calculation of the losses of the optimal
value of the objective function caused by these constraints shows that, for subperiods of one month, no sub-
stantial loss is encountered. This suggests a temporal decoupling heuristic where the depth of scenario trees
is reduced to a suitable subperiod, yielding a good approximation to the valuation problem with substantially
reduced complexity.

1. INTRODUCTION

Due to the liberalization of energy markets, the trading of energy plays an increasingly important role in
planning tasks of energy producers and distributors. In the case of electric energy, liquid spot markets have
come into existence, so that the economic value of a decision can be reduced to the stock exchange value
of a corresponding product. Decision makers are thus faced with the necessity of developing and solving
stochastic programming models, with the stochastic process of electricity prices as a key component. Be-
ing discrete in time and value, this process can be modeled by means of scenario trees—however, trees
of astronomical size. This raises the important and difficult question how to approximate the process by
scenario trees of tractable size. In one type of approach [13], the tree is constructed from analytical price
models, such as an adapted Pilipovic model [24, 25], possibly combined with bounding techniques to give
upper and lower estimates of the optimal value. Another type of approach constructs trees from simulated
scenarios by a recursive reduction technique that controls the approximation quality using suitable metrics
of distributions and filtrations [16]. In the study presented here, an initial scenario fan has been generated
by simulation from a price model based on [26], which includes deterministic influences (trend and sea-
sonal periodicities) and stochastic influences (outliers and residuals, using an ARMA model), combined by
multiplication.

The particular optimization problem addressed in this study is the valuation of certain swing options [4]
in which the option holder may exercise, within given limits, variable energy amounts from a fixed total
contract volume during a given period. Flexible contracts of this kind originate in the natural gas industry
[1]; nowadays they are commonly used as hedging instruments in power and energy markets and are even
being considered for pricing IT resources [7].

Valuation schemes for swing options have been developed systematically during the last decade. Most of
them are based on or closely related to stochastic dynamic programming (SDP), often combined with spe-
cial techniques that exploit simplifications resulting from the structural properties of specific price models
or specific classes of swing options. A widely known method is the Least Squares Monte Carlo algorithm
[22], which approximates conditional expectations within the SDP scheme by least squares estimates. Re-
lated Monte Carlo simulation approaches are proposed in [18] and [23]. A quantization approach (optimal
discretization) is proposed in [2] and combined with a decomposition of the payoff function of certain
swing options for highly accurate valuation under multi-factor Gaussian price processes. In [9], a specific
Poisson price model is developed deriving the probability for spikes from the electricity supply/demand
ratio, and analytical price formulas are given for very simple weekly swings. In [20], electricity swing
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options are modeled as portfolios of forwards and call options, and a lower bound on their value is derived
by linear optimization under the assumption of a Markov consumption process. In [6, 5], the valuation
problem is formulated and analyzed as an optimal multiple stopping problem for price processes in the
form of geometric Brownian motion and general linear regular diffusion, respectively. A related formula-
tion as stochastic impulse control problem is analyzed in [8], together with a numerical algorithm for the
corresponding Hamilton–Jacobi–Bellman quasi-variational inequality. Other valuation approaches employ
direct discretizations of the price process in space and time within an SDP scheme: grid discretizations are
used in [32] and [15], whereas forests are used in [21] and [19]. Finally, a scenario tree model is proposed
in [14], and special aggregation and reparameterization techniques are developed to obtain a multistage
stochastic linear program tractable by state-of-the art optimization software like CPLEX. The multistage
stochastic programming approach is the most flexible and general one as it does not impose special struc-
tural requirements on price processes or constraints of the swing option.

Many of the above references address the peculiarities of price processes in energy (specifically electric-
ity) markets, which are characterized by mean-reversion, jumps, and spikes. For highly realistic forward
price models involving these phenomena, regime switching, and stochastic volatilities, see also [10, 11].

We consider a stochastic programming model for valuating general swing options, and demonstrate that
our existing optimization algorithms perform very well on that problem class. This holds regardless of a
specific price model or scenario tree. Next we aim at constructing scenario trees by reduction in a way that
is especially suited for the valuation problem, starting from a fan of price scenarios. We wish to develop
techniques that help deciding on when to branch and how many branches to use. The approach taken here
is based on the idea of using the value of the stochastic solution (VSS). The VSS provides information
on any scenario tree obtainable from the given fan, since the fan (where branching occurs only at t = 0)
represents near-perfect information: the complete process of future prices is already determined at t = 1.
In the valuation problems to be considered, the VSS depends mainly on

(1) the total option volume;
(2) the contract period (planning horizon).

The first dependence is non-monotonic since the VSS measures the value of additional flexibility of a
stochastic exercise strategy over a deterministic one. This flexibility decreases when the total option volume
approaches the maximal amount within exercise limits. We evaluate the VSS numerically over the range
of possible option volumes.

The second dependence is clearly monotonic: the VSS will increase with the planning horizon. As
swing options usually have long contract periods, we investigate the effects of a temporal decomposition
into subperiods where the cumulated energy amounts are required to be identical for all scenarios. The
extra constraints will reduce the flexibility (hence the VSS), but for the price model considered we expect
a moderate loss only. This is confirmed by our study, even if we distribute the total energy a priori over
suitably chosen subperiods.

The paper is organized as follows. We formulate the general valuation problem in Sect. 2, discuss some
basic properties and present our solution technology. The concrete problem and price model are given
in Sect. 3. Three computational experiments investigating the VSS are described in Sect. 4, with results
reported in Sect. 5. In Sect. 6 finally, we discuss the results and outline an approximation heuristic to
determine the timescale and structure of tree branchings under suitable assumptions. This heuristic reduces
the complexity of the valuation problem without significant loss of the approximation quality.

2. GENERAL VALUATION PROBLEM

In setting up the mathematical formulation of the valuation problem, we follow [14] where more details
can be found. We consider a planning horizon [0, T ] divided into periods t = 1, . . . , T of unit length, where
[0, T ] represents the (remaining) contract period and each subinterval represents an exercise period. During
period t, the option holder may exercise any power pt within an agreed range Pt = [p−

t , p+
t ]. Often there

are additional ramp constraints (or ratchets), limiting the power difference rt = pt − pt−1 to some range
Rt = [r−

t , r+
t ]. Finally, the cumulated energy et up to time t may vary within Et = [e−

t , e+
t ]. In practice,

the bounds p±t will typically be constant or change just a few times over [0, T ], ratchets will usually have
the form r±t = ±ρ with ρ fixed, and energy limits e±t will only be specified at T and possibly a few more
time instances.
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Further, let K denote the strike price of the option, st the spot price during period t, kt := K − st, and
e0, p0 the initial energy and power values at t = 0. Here p0 will only be relevant in the presence of ratchet
constraints, and we have e0 = 0 if the planning period coincides with the entire contract period.

2.1. Stochastic programming model. Our probabilistic model is based on a finite number of scenarios
with associated probabilities, organized as a scenario tree. Let V denote the set of nodes (vertices) of the
tree, τj the probability of node j, Lt ⊆ V the level set of nodes at depth t, and L the set of leaves; further
1 ∈ L1 the root, j ∈ Lt the “current” node, S(j) its set of successors, i ≡ π(j) its unique predecessor (if
t > 1), and Π(j) = {1, . . . , i, j} the unique path from the root to j. Finally define V∗ := V \{1}. The subtree
rooted in j has respective vertex set, level sets and leaves V(j), Lt(j), and L(j). Below, the vertex set is
often taken to be V = {1, . . . ,N} where nodes are numbered in any ascending order. (In the deterministic
case we have V = {1, . . . , T }.)

More concretely, the stochastic price process (st) has discrete realizations sj defining the scenario
tree and inducing realizations ej, pj, rj, kj of et, pt, rt, kt. We define π(1) = 0 with e0, p0 as above,
and variable vectors r, p, e ∈ R|V | with associated feasible sets RV ,PV , EV , where r = (rj)j∈V and
RV =

∏
j∈V Rj, etc.

The general valuation problem then becomes a stochastic LP,

Minimize
r,p,e

∑

j∈V

τjkjpj (1)

subject to pj = pπ(j) + rj, j ∈ V, (2)
ej = eπ(j) + pj, j ∈ V, (3)
(r, p, e) ∈ RV × PV × EV . (4)

This is a multistage model in control form, with “incoming control” in the terminology of [31]. This
means that the state variables pj, ej depend on the control variable rj of the same node, reflecting the
assumption that the decision for period t is made after observing the actual price sj for period t, at time
t − 1. Concretely, we control the exercise process via the power differences rt; the exercised power pt is
the sum of these differences (first integral), and the cumulated energy et is the sum of the powers (second
integral).

In the absence of ratchets, one obtains a simplified stochastic LP model,

Minimize
p,e

∑

j∈V

τjkjpj (5)

subject to ej = eπ(j) + pj, j ∈ V, (6)
(p, e) ∈ PV × EV . (7)

Again we have incoming control form, now with states ej and controls pj. Thus we control the exercise
process with the power pt, and obtain the cumulated energy et as first integral.

Throughout the paper we let K := 0; hence minimizing
∑

τjkjpj is the same as maximizing
∑

τjsjpj,
the expected spot market value of the contract.

2.2. Aggregated formulation and critical prices. The two models above represent the most straightfor-
ward and most flexible formulations, in that branchings of the scenario tree and bounds on all variables
(including cumulated energy) are allowed at each node. In practice, energy bounds will only be present at
a few points. Moreover, due to the large number of decision periods, branchings of the scenario trees will
occur at relatively few time instances only. In this case every tree node j may represent several periods,
tπ(j) + 1, . . . , tj, where tπ(1) = 0 and tj = T for j ∈ L. Each vector of node variables holds only a single
energy value (associated with tj): (rj, pj, ej) ∈ R2dj+1 or (pj, ej) ∈ Rdj+1, where dj := tj − tπ(j) − 1.
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Letting 1j := (1, . . . , 1) ∈ Rdj , the stochastic LP models can now be reformulated with aggregated peri-
ods:

Minimize
r,p,e

∑

j∈V

τjk
T
j pj (8)

subject to (I − Nj)pj = Mjpπ(j) + rj, j ∈ V, (9)

ej = eπ(j) + 1T
j pj, j ∈ V, (10)

(r, p, e) ∈ RV × PV × EV (11)

and

Minimize
p,e

∑

j∈V

τjk
T
j pj

subject to ej = eπ(j) + 1T
j pj, j ∈ V,

(p, e) ∈ PV × EV .

Here Nj ∈ Rdj×dj contains unit entries on the lower secondary diagonal and zeros elsewhere, while
Mj = 1j1T

π(j) ∈ Rdj×dπ(j) , containing a single unit entry in the upper right corner. These formulations
reduce the total numbers of variables to roughly two thirds and one half, respectively.

It is well-known that the LP without ratchets has a simple solution in the deterministic case: there exists
a critical price s∗ such that pt = p−

t is optimal whenever st < s∗, and pt = p+
t is optimal whenever

st > s∗. (The optimal power for st = s∗ depends on the actual energy bounds.) In fact, the critical price
is given by the optimal dual variables, s∗ = K − y = K − w− − w+. The aggregated formulation just
introduced yields a direct generalization of this result to the stochastic case. From the Lagrangian

L(p, e, y, v±, w±) =
∑

j∈V

τj

[
kT

j pj − yj(eπ(j) + 1T
j pj − ej)

− (v−
j )T (pj − p−

j ) − w−
j (ej − e−

j )

− (v+
j )T (p+

j − pj) − w+
j (e+

j − ej)
]

we obtain the dual LP

Maximize
y,v±,w±

−e0y1 +
∑

j∈V

τj

[
(p−

j )Tv−
j + e−

j w−
j − (p+

j )Tv+
j − e+

j w+
j

]

subject to 1T
j yj = kj + v+

j − v−
j , j ∈ V,

yj = w−
j − w+

j , j ∈ V,

τjyj =
∑

k∈S(j)

τkyk, j ∈ V \ L,

v±, w± ≥ 0.

Starting with yj = w−
j − w+

j for j ∈ L, the remaining multipliers yj are thus determined recursively as
expectations of their successor variables,

yj =
∑

k∈S(j)

τk

τj
yk =

∑

k∈L(j)

τk

τj
(w−

k − w+
k ).

This defines a martingale process on the scenario tree, which induces a martingale process of critical prices
s∗j = K − yj. In other words: along every branch of the scenario tree, the optimal exercise strategy is as in
the deterministic case, just with different critical prices. Of course, the same holds in the non-aggregated
model for every node sequence without branching.

Note finally that one can rewrite the implicit transition equation (9) of the aggregated problem with
ratchets as an explicit one, pj = Gjpπ(j) +Ejrj, with Ej := (I−Nj)

−1 containing unit entries in the lower
triangle and zeros else, and Gj := (I − Nj)

−1Mj = EjMj containing unit entries in the last column and
zeros else. All the LP variants above can thus be written in the following incoming control form, which is



STOCHASTIC PROGRAMMING FOR SWING OPTIONS 5

TABLE 1. Computational statistics for concrete valuation problem on one processor of
a 2.67 GHz Intel Core 2 E6700; relative accuracy 10−10 (duality gap + residuals)

Stochastic LP without ratchets with ratchets

Number of rows 4’415’001 8’830’002
Number of columns 8’830’002 13’245’003
Number of nonzeros 13’245’002 30’905’004
Percentage of nonzeros 3.4×10−5 2.6×10−5

Order of KKT system 13’245’003 22’075’005
KKT vector memory 101.1 MB 168.4 MB
KKT factor memory 101.1 MB 202.1 MB
Total process memory 1181 MB 1859 MB
Number of iterations 89 77
Total solution time 219 s 288 s
Time per iteration 2.46 s 3.74 s

a special case of the tree-sparse problems considered in [31]:

Minimize
u,x

∑

j∈V

τj(d
T
j uj + fT

j xj)

subject to xj = Gjxπ(j) + Ejuj + hj, j ∈ V,

(u, x) ∈ [u−, u+]× [x−, x+].

2.3. Stochastic programming algorithms. In solving the valuation problems above, the main difficulty
is the potentially excessive size of scenario trees. Our tree-sparse solution approach is based on the general
idea of tackling the problem by iterative optimization methods that preserve the overall sparse structure
in the linear subproblems, so that the latter are solvable by highly efficient linear algebra. The idea goes
back to trajectory optimization problems [27, 28] and has been extended to stochastic optimization in
[29, 30, 31]. Specifically, we use a primal-dual interior point method in connection with a factorization
of the large tree-sparse KKT system defining the Newton step in each iteration. The KKT system can
be interpreted as a linear-quadratic regulator problem defined over the scenario tree, with additional local
and global constraints arranged into a generic hierarchical scheme. The associated factorization can be
interpreted as a hierarchical sequence of projections in each node, combined with a dynamic programming
recursion over the tree. Assuming that the number of variables in all nodes is comparable, this algorithm
achieves optimal complexity O(|V |) with respect to both memory and runtime.

To exploit application-specific structural properties, a software tool has been developed [17] that an-
alyzes the specific KKT structure and generates a custom factorization as source code in C++. Data
structures and operations of the custom implementation are designed with the aim of minimal storage
requirements and moderate operation counts. This approach is particularly efficient on regularly structured
models like the one under consideration. For instance, the constraints matrix contains only unit entries
(±1) in fixed positions. Consequently, the custom implementation can represent the matrix entirely in
code. It needs no memory to store entries or even entry positions. Similarly, the KKT matrix factorization
has many such entries which are detected and represented in code; storage will only be allocated for the
remaining entries, along with code that computes their values. Table 1 provides computational statistics for
the solution of the concrete valuation problem with and without ratchets, using a scenario fan with 1000
scenarios (see below). Observe that each problem is solved in less than 5 minutes on a 2 GB machine, with
total memory (code and data) less than 12 times the size of one KKT vector. Note also that the per-iteration
effort depends only on the size of the scenario tree but not on its topology.

Table 2 gives a comparison of runtime and storage requirements of our solver IPM/TreeKKT with ILOG
CPLEX 10.1.1 (dual simplex and barrier) on the valuation problem with ratchets for various numbers of
scenarios. Both solvers run on the same machine but under different operating systems: CPLEX under
Windows XP Professional, and IPM/TreeKKT under GNU/Linux (openSuSE 10.3). CPLEX reads an LP file
and then solves the problem after some preprocessing; IPM/TreeKKT only reads the problem dimensions and
price scenarios and then solves the problem without any preprocessing. The additional storage and memory
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TABLE 2. Computational comparison for concrete valuation problem on one CPU of a
2 GHz Intel Xeon 5130 server with 12 GB RAM: IPM/TreeKKT vs. CPLEX 10.1.1

Solution time in seconds: (read data) + presolve + solve

Scenarios IPM/TreeKKT CPLEX dual simplex CPLEX barrier

100 (0.3) + 0 + 30.2 (8.3) + 2.1 + 13.3 (8.3) + 2.3 + 39.3

200 (0.6) + 0 + 62.1 (51.6) + 4.2 + 34.6 (70.6) + 4.6 + 73.6

300 (0.8) + 0 + 97.0 (92.5) + 6.3 + 63.9 (109.8) + 7.0 + 121.1

500 (1.4) + 0 + 171.7 (66.0) + 10.9 + 127.4 (66.8) + 11.6 + 218.7

1000 (2.7) + 0 + 401.1 (243.4) + 21.4 + 453.1 (237.9) + 23.5 + 529.9

Total memory in MB: (read data) + solve

Scenarios IPM/TreeKKT CPLEX dual simplex CPLEX barrier

100 (0) + 213 (170) + 581 (170) + 705

200 (0) + 397 (319) + 1192 (319) + 1410

300 (0) + 580 (481) + 1791 (481) + 2130

500 (0) + 946 (700) + 3240 (700) + 3810

1000 (0) + 1862 (1940) + 6007 (1940) + 7180

requirements for reading the LP files into CPLEX (in parentheses) are mainly shown for completeness: they
can probably be reduced to the corresponding values of IPM/TreeKKT by using the CPLEX callable library
interface, and will be disregarded in the following discussion.

The runtime comparison shows the typical behavior of interior point methods and (dual) simplex for
an LP. The simplex algorithm clearly outperforms our interior point method on smaller problem instances.
For 100 scenarios it is nearly twice as fast, with 15.4 s versus 30.2 s. Conversely, our interior point method
performs better on large instances, with 401.1 s versus 474.5 s on the 1000 scenario problem. The CPLEX
interior point method (barrier) behaves similar in principle but is between 26% and 38% slower than our
algorithm.

The main advantage of IPM/TreeKKT becomes obvious in the memory comparison. A linear interpola-
tion for n = 500 and n = 1000 scenarios yields as memory requirements 30 + 1.832n for IPM/TreeKKT,
473+5.534n for CPLEX dual simplex, and 440+6.74n for CPLEX barrier. This is exact for IPM/TreeKKT
(up to rounding errors) while CPLEX actually needs less memory on the smaller instances. In any case, on
the large instances CPLEX dual simplex and CPLEX barrier require 3.0 times and 3.7 times more memory
per scenario than IPM/TreeKKT, respectively. On the 12 GB server, the largest solvable instances thus have
roughly 1650 and 2000 scenarios, versus 6300 with IPM/TreeKKT.

3. CONCRETE VALUATION PROBLEM

3.1. Evaluated contract. A bilateral contract with optionalities for obtaining electrical energy from an
energy supplier has to be valuated. This valuation is based on its optimal exercise at the European Energy
Exchange (EEX) spot market: the value of an exercise of the contract at a particular hour is interpreted as
the corresponding value at the EEX spot market. The contract defines exercise rights for obtaining variable
amounts of energy:

• contract period in h: T = 4416 (2 quarters Q1, Q2, 1.7.2006-31.12.2006)
• contract volume in GWh: e±2208 = 50 (Q1), e±4416 = 240 (Q2)
• power limits in MW: Pt = [0, 90] (Q1), Pt = [25, 145] (Q2)
• ratchets in MW: r±t = ±60

This type of contract can be viewed as a swing option [4]. With a swing option, the owner has the possibility
to hedge his risks at the spot market with flexible exercise profiles of the option, which other hedging
instruments such as futures are not capable of because of their rigid exercise structure allowing just to
hedge with a fixed exercise that may differ only from peak to off-peak period. General swing options may
require also temporal constraints such as a minimum period between two swings (changes in exercise). In
our example, this is not required. For an example, Figure 1 shows part of an optimal exercise strategy for
a simulated spot price scenario.
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FIGURE 1. Example of an optimal exercise for a single scenario (partial view)

3.2. Price model. From the numerous electricity price models published so far, we have chosen the one
described in [26]. Details and their justification can be found there. In this section we just sketch this model
and outline where our model differs from it.

The spot price st is decomposed into four components: two deterministic ones, the trend str
t and the

seasonal part sseas
t , and two stochastic ones, the outlier part sout

t and the residual part sres
t . The price st

without outliers is modeled as
st = str

tsseas
t sres

t . (12)
The trend follows an exponential model; the seasonal part models daily profiles and the yearly seasons. The
latter are modeled by a trigonometric polynomial with a basic oscillation of one year plus the first harmonic
of half a year. For the daily profiles, we define five categories of days: Monday or day after or between
holidays, Tuesday to Thursday, Friday or day before holiday, Saturday, Sunday or holiday. For each of
these categories and for every hour (1–24), we estimate an independent model based on the trigonometric
polynomial. The residuals are assumed to follow an ARMA process with time lags of t − 1, t − 24 and
t− 25. For estimating the parameters, we transform the historical residuals to obtain a normal distribution.
Outliers are then added to the model by a random process that creates an outlier at t with probability
pout

t , depending on whether there has been an outlier at certain preceding points of time. The values of
outliers are modeled by the gamma distribution. All probabilistic models are calibrated on historical data,
specifically, EEX spot prices of the years 2003–2006.

3.2.1. Scenario simulation. We generate n price scenarios by Monte-Carlo simulation using the price
model just presented. The scenarios are assumed to have identical probability τj = 1/n. This yields a
scenario fan as in Fig. 2, which represents the approximation of the price process that our experiments
are based on (see Sect. 4). Note that the construction of a scenario tree according to [16] starts from such
a scenario fan, to which certain reduction steps are applied. Note further that, with n in the range of
tractability (n = 1000 in our experiments), the probability of obtaining a scenario fan rather than a more
general tree is close to one since the probability of sampling two identical prices at t = 1 is almost zero.
Figure 3 shows 30 simulated scenarios for a period of one week.

3.2.2. Approximation with a tree or a fan? This question motivates the experiments to be presented in the
next section. In the following, we briefly discuss this item.

There are strong arguments for preferring general scenario trees (branching at any point of time) over a
scenario fan (branching only at t = 0) [12, 4, 3]: in a stochastic process, chance unfolds all the time and
not only at the very beginning. Optimization based on a fan works with an erroneous process model, since
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FIGURE 2. The simulated scenario fan with spot market prices
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FIGURE 3. 30 simulated scenarios for a sample week

all decisions after the first step are deterministic (from t = 1 on, the future price process is completely
known until the end of the contract period). This should lead to a result that is too optimistic since the
algorithm has perfect information about the future.

On the other hand, the theory of scenario tree reduction [16] tells us that a tree constructed by reduc-
tion from a fan approximates the distribution and filtration given by that fan, where the reduction method
guarantees stability in the sense that convergence of reduced scenario trees to the reference tree (fan) under
a particular metric leads to convergence of the optimal values to the optimal value for the reference tree
(fan).

It seems that the question whether a sampled fan (of moderate size) or a tree constructed by reduc-
tion from such a fan gives a better approximation of the optimal value cannot be answered in general,
notwithstanding the strong structural argument given at the beginning of this paragraph in favor of a tree.
For this reason, we perform three experiment series, to quantitatively evaluate the impact of the structural
constraints that a tree introduces to the valuation problem.

4. COMPUTATIONAL EXPERIMENTS

4.1. Experiment 1. Using the 1000 scenarios just described, we solve the valuation problem (1–4) for the
contract of Sect. 3.1 over the following range of contract volumes (in GWh):

e±2208 = 50α ∈ [0, 95], e±4416 = 55.2 + (240 − 55.2)α. (13)
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Thus, α is a common scaling factor for the nominal exercise volumes of quarters Q1 and Q2 in excess of
the base load

∑t
τ=1 p−

τ . Three cases are distinguished: (1) expected value: deterministic optimization of
the single scenario of expected prices, s̄t =

∑
j∈Lt

τjsj; (2) wait-and-see: separate optimization of each
scenario; (3) here-and-now: joint optimization over the scenario fan. The difference of the mean optimal
value of (2) and the optimal value of (3) is called the expected value of perfect information (EVPI). For
the given fan it turns out to be almost zero, indicating (as expected) that the nonanticipativity constraint at
t = 0 (decisions being identical for all scenarios) has a negligible impact. The difference of the optimal
values of (3) and (1) is called the value of the stochastic solution (VSS). This value is more interesting in
our case. Results will be discussed in Sect. 5.1.

4.2. Experiment 2. Here we valuate the contract over individual scenarios with its nominal volume,
e±2208 = 50, e±4416 = 240, but with additional inter-scenario volume constraints

ej = ek ∀j, k ∈ Lt, ∀t ∈ T , (14)

where T ∈ {Td, Tw, Tm} selects the set of final periods either of each day, week, or month within the
contract period. Thus we require that the cumulated energy exercised during each of these subperiods
agrees for all scenarios, while the respective amounts are subject to optimization.

Compared to experiment 1 we use a relatively small number of 30 scenarios. This is due to the fact that
we do not have a suitable modeling environment for stochastic optimization with inter-scenario constraints,
so we have to set up the deterministic equivalent manually. Consequently, the results of experiment 2 are
not statistically significant. However, these results just serve for motivating experiment 3 which runs again
on 1000 scenarios.

4.3. Experiment 3. Next we valuate the contract again over individual scenarios and with its nominal
volume, but now with additional per-scenario volume constraints

ej = ēt ∀j ∈ Lt, ∀t ∈ T , T ∈ {Td, Tw, Tm}, (15)

where ēt denotes the optimal cumulated volume from experiment 1, case 1. Thus we require again that
the cumulated energy exercised during each subperiod agrees for all scenarios, but now with prescribed
amounts.
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FIGURE 5. EVPI (absolute) and VSS (absolute and relative) for the scenario fan

5. COMPUTATIONAL RESULTS

5.1. Experiment 1. Figure 4 shows the optimal contract value for the three cases of experiment 1, in
dependence of the contract volume of quarter Q1. It turns out that the factor α is bounded by the freely
exercisable energy,

∑
τ(p+

τ − p−
τ ), during quarter Q2: the valuation problem becomes infeasible at

α̂ =
240 − 50 − 2208× 0.025

2208× (0.145 − 0.025)
' 1.9656, or ê±2208 ' 98.2789. (16)

We call 100e±2208/ê±2208 the coverage; it measures the percentage of hours of Q2 necessary to exhaust the
contract volume when exercising p+

t during these hours, thus indicating a lack of flexibility. We will use
e±2208 as a good approximation of the coverage.

Turning to Figs. 4–5, we confirm that the EVPI (difference of cases 2 and 3) is indeed very small
(< 80e throughout). Hence, we compare case 1 (“deterministic optimization”) with cases 2, 3 (“stochastic
optimization”). As can be seen from Fig. 5, the gain by stochastic optimization (VSS) increases rapidly for
small coverage reaching an early maximum, and then decreases moderately toward large coverage (i. e.,
little flexibility in exercising the contract). The absolute VSS varies between 0.35 and 1 Million Euro,
having its maximum at 20% coverage. The relative VSS reaches a maximum of 13% at 10% coverage,
then decreases to 4% at about 50% coverage and to 2% at about 85% coverage.

Note that the optimal contract value for any scenario tree based on the same scenarios must lie between
the values of cases 1 and 2; thus the VSS studied in Fig. 5 (plus the negligible EVPI) is an upper bound for
the given set of scenarios.

5.2. Experiment 2. Next we consider the modified problem where inter-scenario constraints require the
cumulated energy exercised during certain subperiods (day, week, or month) to agree for all scenarios.
Subperiods of an hour would be equivalent to case 1 above (deterministic optimization), yielding a lower
bound on the optimal value. The given subperiods must result in contract values between cases 1 and 2.

Table 3 gives the relative losses of the optimal contract value with respect to case 3 for the first quarter.
The monthly constraint has very little influence on the value, and also the weekly constraint causes only a
moderate loss. Therefore the variability that is exploited by perfect information hardly extends over more
than a week. This qualitative interpretation is not surprising, however. It reflects the fact that, in our price
model, the long-term behavior is modeled mainly by the deterministic components, trend and season. The
stochastic component of outliers has little influence, and the residuals generate volatility only over a short
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TABLE 3. Mean loss (in %, over first quarter) due to subperiod constraints

0.71 identical monthly amounts
1.77 identical weekly amounts
4.59 identical daily amounts
7.70 identical hourly amounts (deterministic optimization: case 1)

FIGURE 6. Daily exercises under the weekly constraint

TABLE 4. Mean loss (in %, over both quarters) due to subperiod constraints

0.4 fixed monthly amounts (deterministically optimal)
1.0 fixed weekly amounts (deterministically optimal)
4.2 identical hourly amounts (deterministic optimization: case 1)

range because of the small auto-regression time lag (25 hours). Thus we can only expect a very moderate
accuracy of the long-term approximation from the sampled scenarios.

Figure 6 shows the optimal daily exercise volumes (not the hourly volumes, for the sake of better visi-
bility) under the weekly constraint for all 30 scenarios. These values vary considerably both within single
scenarios during a week and between different scenarios at a given hour. The difference between workdays
and weekend is quite apparent.

Figures 7–8 show the weekly profits under the weekly and the monthly constraint, respectively. It can be
seen for the first quarter (which has a low coverage) how the monthly constraint results in a higher variance
of the profit than the weekly one, due to potentially higher flexibility in exercising the contract.

Although these results are not statistically significant, the qualitative conclusions are supported by the
quantitative results of experiment 3.

5.3. Experiment 3. In this experiment, the cumulated energy of every scenario on every subperiod (hour,
week, or month) is fixed, matching the corresponding optimal amount of the deterministic optimization
(experiment 1, case 1).

Table 4 presents the results for the mean loss with respect to the stochastic optimization on the scenario
fan, i. e., case 3. The difference to Table 3 results from the fact that in experiment 2 we consider only the
first quarter but here both quarters. Again, as in experiment 2, we see that the monthly constraint results in
just 10% loss of the VSS (relative VSS = 4.4% at 50 MWh), and the weekly constraint results in less than
25%.
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FIGURE 8. Weekly profits under the monthly constraint

6. DISCUSSION

The motivation for the investigations in this work was to analyze the gain of a stochastic optimization
over the deterministic optimization (VSS) for a concrete valuation problem, in dependence on the flexibility
for exercising the contract in its original form (experiment 1) or with additional subperiod constraints on
the cumulated energy (experiments 2 and 3). The results reported in the last section encourage us to sketch
in this section a heuristic for dimensioning and structuring the scenario trees for the specific problem of
valuating swing options. This heuristic consists of the following steps:



STOCHASTIC PROGRAMMING FOR SWING OPTIONS 13

FIGURE 9. Steps 4a and b: reducing the scenario trees

(1) Determine the bounds on the optimal contract value, the lower bound given by the optimal value of
the mean price scenario (expected value solution), and the upper bound given by the mean optimal
value over all individual scenarios (wait-and-see solution).

(2) For various uniform subdivisions of the contract period with different values of the subperiod
length, determine for each subinterval of every subdivision the cumulated exercise amount of the
expected value solution.

(3) For every subperiod length, determine the mean loss of the optimal value with respect to the upper
bound of step 1 if the subperiod exercise amounts of all scenarios are fixed to the values calculated
in step 2.

(4) For a given approximation tolerance, select on the basis of step 3 the largest subperiod length
whose mean loss remains within the tolerance. Now define approximate valuation problems using
the selected subperiod length:
a) For optimizing the exercise strategy over some initial period within the first subperiod (just the

first day, say), use the valuation problem for the first subperiod with the cumulated exercise
volume determined in step 2. This reduces the planning horizon; hence we can generate a sce-
nario tree of substantially reduced complexity (by the methods cited in section 1, for instance).
See Fig. 9a for an illustration of the principle.

b) For valuating the contract over the entire planning horizon, the problem can be temporally
decomposed to obtain independent subproblems over the selected subdivision. For each subpe-
riod, a separate scenario tree can be generated, having as initial spot price the mean price over
all scenarios and restricting the cumulated energy to the amount determined in step 2. Again,
this will yield a substantial reduction of the problem complexity. See Fig. 9b for an illustration
of the principle.

Next we discuss how the subproblems created by the temporal decomposition or reduction (as a special
case) are related to the original problem and to each other. Of course, the selected approximation tolerance
will not yield any hard bounds on how much one loses by the decomposition; rather, it is a measure how
well the contract volume has been distributed over the subperiods. Given that the price model and the
limited number of sampled scenarios will reflect the long-term behavior rather inaccurately in any case,
we feel that the valuation error induced by the decomposition should be tolerable. It remains to discuss
feasibility issues. Intertemporal dependencies of the decisions (exercises) in the original valuation problem
(Sections 2–3) are introduced by

• the bounds on the cumulated exercise volume;
• the ratchets.
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The first dependence is a long-term dependence, the second a short-term one. By introducing the subperiod
constraints on cumulated exercise amounts as in experiment 3, we break the first dependence while keeping
the total volume, thereby guaranteeing feasibility with respect to the cumulated energy of the original
problem. The ramp constraints (ratchets) across subperiod boundaries, however, are dropped in step 4 of
the temporal decomposition.

Now, when optimizing over the first subperiod (case 4a), the dropped ratchets belong to the following
subperiod, and feasibility is still guaranteed with respect to all constraints of the original problem.

In case of step 4b, dropped ratchets belong to the beginning of every subperiod after the first, and will
generally be violated. This can be prevented by additional constraints if desired. For instance, we could
optimize the subproblems backward in time, recursively tightening exercise bounds in the last hour of the
previous subperiod to force consistence with the ratchets relative to the optimal exercise in the first hour
of the current subperiod. However, we are primarily interested in a good approximation of the contract
volume, and in generating a good exercise strategy for some initial period. In practice the model will
be reoptimized after that initial period, and the contract provides enough flexibility to generate a feasible
exercise strategy this way. Therefore it is not necessary to enforce full feasibility in the decomposed
problem.

In conclusion, the suggested heuristic promises the advantage of obtaining a good approximation of the
contract value with substantially reduced effort and with easily parallelizable subproblems.

7. CONCLUSION

We have determined optimal values of an energy supply contract of swing option type for several sto-
chastic and deterministic optimization models.

We have also calculated, with respect to a scenario fan, the expected value solution (given by determin-
istic optimization based on the mean price scenario), and the mean contract value under perfect information
(given by averaging the optimal values of all individual scenarios). The two solutions provide lower and
upper bounds, respectively, for the contract value obtained with any scenario tree constructed from the
given fan by reduction techniques. The difference between the bounds equals the value of the stochastic
solution (VSS) plus the negligible expected value of perfect information (EVPI).

By introducing additional subperiod constraints (thus fixing the exercise amounts of all scenarios to the
corresponding optimal amounts of the deterministic optimization), we found that a smaller optimization
horizon can be chosen without significant loss of the resulting contract value. This also allows for temporal
decomposition of the valuation problem into independently solvable subperiod problems, yielding drastic
reductions of the size of scenario trees. In combination with the fast solution algorithms presented in
Sect. 2.3, we are thus able to solve good approximations of the valuation problem efficiently.
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