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Abstract. Complex real-world optimization tasks often lead to mixed-integer
nonlinear problems (MINLPs). However, current MINLP algorithms are not
always able to solve the resulting large-scale problems. One remedy is to de-
velop problem specific primal heuristics that quickly deliver feasible solutions.

This paper presents such a primal heuristic for a certain class of MINLP mod-
els. Our approach features a clear distinction between nonsmooth but contin-
uous and genuinely discrete aspects of the model. The former are handled by

suitable smoothing techniques; for the latter we employ reformulations using
complementarity constraints. The resulting mathematical programs with equi-
librium constraints (MPEC) are finally regularized to obtain MINLP-feasible
solutions with general purpose NLP solvers.

1. Introduction

Mixed-integer nonlinear optimization is a highly versatile tool for modeling ap-
plication problems in many areas: it covers both discrete aspects of decision mak-
ing and nonlinear real-world phenomena. However, state-of-the-art algorithms for
mixed-integer nonlinear problems (MINLPs) are still far from offering the reliabil-
ity, performance and robustness of solvers for mixed-integer linear problems (MIPs)
or nonlinear optimization problems (NLPs). As a consequence, hard MINLPs that
cannot be solved directly are frequently tackled by one of the following approaches:

(1) MIP-based approach: Nonlinearities are replaced by local linearizations or
by piecewise linear global approximations. This yields MIP models for
which the number of discrete variables is often drastically increased due
to the linearization techniques; see, e.g., [10, 25, 29, 43] and the references
therein.

(2) NLP-based approach: Discrete aspects are reformulated with continu-
ous variables and constraints or approximated to obtain an NLP model;
see Sect. 2.2 for a brief literature review.

Both approaches offer specific advantages and suffer from inherent drawbacks. The
MIP approach shows its strength if the MINLP is dominated by discrete variables
and incorporates only a few nonlinear constraints. This will typically lead to a
slight increase of the number of discrete variables only. Moreover, standard MIP
solvers deliver global solutions (of the linearized problem). The NLP approach is
often superior for MINLPs with only few discrete variables but a large number of
nonlinear constraints, but in general it delivers only local minima. From a numerical
point of view, the MIP approach tends to be more robust in terms of starting points,
scaling of the problem, etc., whereas the NLP approach can be very fast.

Of course, ultimately one would like to solve hard MINLP models directly. An
essential and generally difficult subtask of dedicated MINLP algorithms consists in
finding (approximately) feasible solutions to obtain upper bounds. In this paper
we present a primal heuristic for that purpose. It is inspired by the NLP-based
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approach sketched above, and we will refer to it as the MPEC-based approach.
The MINLP models that can be handled have the key property that their (mod-
erate number of) discrete aspects possess equivalent reformulations with problem-
specific complementarity constraints, yielding nonlinearmathematical programs with
equilibrium constraints (MPEC). The MPECs are finally regularized by standard
techniques so that they can be solved by NLP algorithms. The goal is to deliver
approximate MINLP-feasible solutions quickly (or to fail quickly).

Our approach aims at large-scale optimization models arising in real-life appli-
cations. Such models frequently involve nonsmooth constraints (continuous but
only piecewise C2) that can be converted to smooth (C2-)constraints with artificial
discrete variables to identify the smoothness domains. Solving MINLP models of
this type tends to be extremely hard: algorithms have been observed to spend a lot
of time (or fail) to get the artificial discrete “decisions” right, without making any
progress toward a minimum. An important aspect of the approach proposed here
lies in avoiding this (inappropriate) modeling of nonsmooth constraints. Instead
we consider C0-MINLPs and employ suitable smoothing techniques to obtain C2-
constraints. A precursor of this approach has been successfully applied in operative
planning of water networks [6, 7]. In the application part of this paper (Sect. 4)
we demonstrate that the proposed MPEC-based approach delivers approximately
MINLP-feasible solutions and hence can be used as a primal heuristic in MINLP
solver frameworks.

The paper is organized as follows. Sect. 2 gives a formal definition of the problem
classes arising in the reformulation of nonsmooth mixed-integer nonlinear problems
as smoothed and regularized NLP models. In Sect. 3 the relations between these
models are discussed. As a proof of concept the real-world application of validation
of nominations in gas transport networks is presented in Sect. 4. Finally we give a
brief summary in Sect. 5.

2. A Hierarchy of Optimization Models

Here the reformulation of a given nonsmooth MINLP is presented step by step
in order to discuss certain properties of the models and to explain some model
transition techniques. The sequence of reformulations finally leads to an NLP
model.

In all models we denote constraints by c. A vector of constraints is indexed with
a corresponding index set. For instance, cE := (ci)i∈E , is the vector of all equality
constraints; cI the vector of inequality constraints. Frequently we use superindices
to indicate the semantics of constraints. A superindex d marks nonsmooth con-
straints, s marks smoothed constraints and r marks constraints that result from
regularization techniques for MPECs. Constraints without superindex are always
assumed to be twice continuously differentiable. Continuous variables are referred
to as x and discrete ones as z. Objective functions are denoted by f .

2.1. Standard Mixed-Integer Nonlinear Problems. The general MINLP
model is given by

min
x,z

f(x, z)(1a)

s.t. cE(x, z) = 0, cI(x, z) ≥ 0,(1b)

x ∈ R
nx , z ∈ Z

nz .(1c)

Instead of z ∈ Z
nz we may have z ∈ {0, 1}nz , i.e., z is further restricted to be binary.

The objective f and constraints c = (cE , cI) are assumed to be twice continuously
differentiable.
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As discussed in the introduction, many applications do not satisfy the smooth-
ness assumption. While jump discontinuities are properly handled by mixed-integer
techniques involving artificial discrete variables and additional (big-M) constraints,
this approach typically yields unnecessarily hard MINLPs when applied to non-
smooth but continuous functions. Therefore we consider the refined problem class
C0-MINLP defined by

min
x,z

f(x, z)(2a)

s.t. cE(x, z) = 0, cI(x, z) ≥ 0,(2b)

cdE(x, z) = 0, cdI(x, z) ≥ 0,(2c)

x ∈ R
nx , z ∈ Z

nz .(2d)

Here we split the constraints into smooth and nonsmooth ones: c = (cE , cI) ∈ C2,
cd = (cdE , c

d
I) ∈ C0 and piecewise C2. For the objective we still assume f ∈ C2 with-

out loss of generality: nonsmooth terms can always be moved to the constraints cd.
Problem (2) will be the basis of the following sequence of reformulations.

2.2. From C0-MINLP to C0-MPEC: Complementarity Constraints. The
primary difficulties in the C0-MINLP (2) are the discrete variables z and the non-
smooth constraints cd. In this section we reformulate (2) with continuous variables
and additional (smooth) constraints to obtain an equivalent problem without dis-
crete variables. The original nonsmooth constraints cd will be kept in this step.

Typical reformulation approaches [23, 40] make use of so called NCP-functions
(see [42] for an overview). In particular, the Fischer–Burmeister function is used to

restrict a continuous variable x ∈ R to B := {0, 1} or to B̃ := {0}∪[1,∞). However,
since NCP-functions are nonsmooth we prefer an alternative approach that works
directly with complementarity constraints [2]. Ultimately it is based on the trivial
fact that

(3) x (x− 1) = 0 ⇐⇒ x ∈ B.

Since this formulation is very ill-behaved numerically, a lifted version with an ad-
ditional continuous variable y is usually preferred, yielding the standard MPEC
formulation

(4) xy = 0, x, y ≥ 0.

Here the cases x = 0, y > 0 and x > 0, y = 0 correspond to x = 0 and x = 1, re-
spectively, but the improved numerical behavior comes at the price of an undecided
third state, x = y = 0.

Fortunately, many applications with discrete alternatives share a property that
can be exploited in a more useful way: the alternatives can be represented as subsets
of a space of continuous variables. Formally, let A be some model aspect with a
finite set of states A1, . . . , Aa that correspond to constraint sets for some vector
xA ∈ R

nA ,

(5) cE,Ai
(xA) = 0, cI,Ai

(xA) ≥ 0, i = 1, . . . , a.

Then aspect A has a generic MINLP formulation as part of (1) or (2), using binary
variables

(6) zA = (zAi
)ai=1 ∈ {0, 1}a
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together with big-M and SOS-1 constraints,

ME,Ai
(1− zAi

)− cE,Ai
(xA) ≥ 0, i = 1, . . . , a,(7a)

ME,Ai
(1− zAi

) + cE,Ai
(xA) ≥ 0, i = 1, . . . , a,(7b)

MI,Ai
(1− zAi

) + cI,Ai
(xA) ≥ 0, i = 1, . . . , a,(7c)

a
∑

i=1

zAi
= 1, zAi

∈ {0, 1} , i = 1, . . . , a.(7d)

An equivalent general disjunctive programming formulation [19, 33] is given by

a
∨

i=1





zAi
= 1

cE,Ai
(xA) = 0

cI,Ai
(xA) ≥ 0



 .(8)

For the following we need the key concept of non-disjunctive states: states whose
constraint sets overlap. The formal definition involves characteristic functions.

Definition 1. Let A be a model aspect with states Ai, i = 1, . . . , a, represented by
variables and constraints as in (5) and (6).

(1) A function χAi
: RnA → R is called a characteristic function of state Ai if

χAi
(x) = 0 if cE,Ai

(x) = 0 and cI,Ai
(x) ≥ 0,

χAi
(x) > 0 else.

(9)

(2) Two states Ai and Aj are called non-disjunctive if there exists x ∈ R
nA

such that

(10) χAi
(x) = χAj

(x) = 0.

In what follows we only consider C0-MINLP models where all discrete aspects
have two non-disjunctive states and refer to this class as 2-state-C0-MINLP. As a
direct consequence of the above definition, we can then state the following Lemma.

Lemma 1. Let A1, A2 be non-disjunctive states of a model aspect A that is mod-
eled with variables (xA, zA) and constraint sets cE,Ai

, cI,Ai
, i = 1, 2. Let χAi

denote
corresponding characteristic functions. Then the MINLP model of A can be equiv-
alently replaced by the MPEC model

(11) χA1
(xA)χA2

(xA) = 0.

Proof. Let x∗A be a solution of the reformulated MPEC model and let χA1
(x∗A) = 0.

Then it follows with (9) that cE,A1
(x∗A) = 0 and cI,A1

(x∗A) ≥ 0. By setting zA1
= 1

and zA2
= 0 we have constructed a feasible solution to (7). The case χA2

(x∗A) = 0
and the reverse direction are analogous. �

An equivalent reformulation of the general 2-state-C0-MINLP model as an C0-
MPEC model according to Lemma 1 can now be written

min
x∈Rnx

f(x)(12a)

s.t. cE(x) = 0, cI(x) ≥ 0,(12b)

cdE(x) = 0, cdI(x) ≥ 0,(12c)

φi(x)ψi(x) = 0, i = 1, . . . , p,(12d)

φi(x), ψi(x) ≥ 0, i = 1, . . . , p.(12e)

Here φi, ψi : R
nx → R are the complementarity constraint pairings constructed from

characteristic functions and p is the number of 2-state model aspects Ai,

(13) φi = χAi,1
, ψi = χAi,2

, i = 1, . . . , p.
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Note that the “undecided third state” of (4) does not pose a problem here: the
crucial property of non-disjunctive states is that their continuous variables can be
identical.

2.3. From C0-MPEC to C2-MPEC: Smoothing. This section addresses the
remaining major difficulty of (12): the nonsmooth constraints cd. Quite often the
nonsmoothness arises from the absolute value function or from functions that can
be expressed in terms of it, like min(x, y) and max(x, y).

As already mentioned, first-order discontinuities should not be modeled by arti-
ficial discrete variables in the current context; the constraints cd should rather be
replaced with sufficiently smooth approximations cs. We use approximations that
depend on a smoothing parameter, cs(x; τ) ≈ cd(x) with τ > 0, satisfying at least
a pointwise approximation property:

(14) ∀x : lim
τ→0

cs(x; τ) = cd(x).

This provides control over the approximation quality by adjusting the smoothing
parameter τ . For the nonsmooth functions mentioned above we actually have uni-
formly convergent approximations,

|x| ≈ v(x; τ) =
√

x2 + τ ,(15)

min(x, y) ≈ y − 1
2
(v(x− y; τ)− (x− y)),(16)

max(x, y) ≈ y + 1
2
(v(x− y; τ) + (x− y)).(17)

Of course, the value of τ should not be chosen too small because this would intro-
duce numerical instabilities and ill-conditioning. Unfortunately there is no general
rule for choosing parameters like τ ; they have to be tuned separately for each model.
Moreover, one often needs problem specific smoothing techniques. We will give an
example for an application in gas network optimization in Sect. 4.

The smoothed C0-MPEC model (12) will be referred to as C2-MPEC; it reads

min
x∈Rnx

f(x)(18a)

s.t. cE(x) = 0, cI(x) ≥ 0,(18b)

csE(x; τ) = 0, csI(x; τ) ≥ 0,(18c)

φi(x)ψi(x) = 0, i = 1, . . . , p,(18d)

φi(x), ψi(x) ≥ 0, i = 1, . . . , p.(18e)

2.4. From C2-MPEC to C2-NLP: Regularization. We now have to solve the
smooth MPEC model (18). It is well-known that standard NLP constraint quali-
fications, such as the Mangasarian–Fromowitz constraint qualification (MFCQ) or
the linear independence constraint qualification (LICQ), do not hold at any feasi-
ble point of the MPEC. To apply standard NLP algorithms without losing their
good convergence properties, various regularization schemes have therefore been
developed. There are basically three groups of existing schemes:

(1) relaxation schemes,
(2) penalization schemes,
(3) smoothing schemes.

The common idea of all regularization schemes is to replace the MPEC constraints
(18d) and (18e) with NLP constraints that depend on a regularization parameter
µ. Then one solves a sequence NLP(µk) with µk → 0 whose solutions converge to
an MPEC solution under suitable assumptions.
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One of the first regularization schemes is the relaxation scheme of Scholtes [39],
which relaxes the complementarity constraints (18d) to

(19) φi(x)ψi(x) ≤ µ, i = 1, . . . , p.

This yields a regularized problem NLP(µ) with feasible set F (µ) such that the
original MPEC-feasible set is F (0) and F (µ0) ⊂ F (µ) for all µ > µ0 ≥ 0. If
NLP(µ) is to be solved by an interior point method, the relaxation (19) has the
drawback that it lacks strict interior points in the limit. DeMiguel et al. address
this problem in [12] by additionally relaxing the nonnegativity constraints (18e) to

(20) φi(x), ψi(x) ≥ −θ, i = 1, . . . , p.

They propose a method that drives either θ or µ to zero in the limit but not both.
Penalization schemes remove the complementarity constraints completely from

the constraints set and introduce a weighted penalty term in the objective instead.
Thus (18d) is dropped from (18), and (18a) is replaced with

(21) f(x) +
1

µ
Π(φ(x), ψ(x)).

Theoretical results for a general class of penalty functions Π can be found in [21].
In particular, these results include the concrete instance

(22) Π(φ(x), ψ(x)) =

p
∑

i=1

φi(x)ψi(x)

that is most frequently used in practice.
Other regularization approaches use nonsmooth reformulations of the comple-

mentarity constraints φi(x)ψi(x) = 0, such as

(23) min {φi(x), ψi(x)} = 0,

and employ nonsmooth optimization techniques to solve the resulting problem.
Finally there are smoothing techniques using modified NCP-functions like the

perturbed Fischer–Burmeister function (first proposed in [16]),

(24) ζ(φ, ψ; τ) = φ+ ψ −
√

φ2 + ψ2 + τ = 0.

In what follow we concentrate on relaxation and penalization schemes since these
performed best on the application problem presented below. Both approaches of
regularizing the MPEC model (18) yield a C2-NLP that satisfies a standard con-
straint qualification and can be written in the general form

min
x∈Rnx

f(x) + g(x;µ)(25a)

s.t. cE(x) = 0, cI(x) ≥ 0,(25b)

csE(x; τ) = 0, csI(x; τ) ≥ 0,(25c)

crE(x;µ) = 0, crI(x;µ) ≥ 0,(25d)

φi(x), ψi(x) ≥ −θ, i = 1, . . . , p.(25e)

For the relaxation scheme (19), possibly extended by (20), crE vanishes and we have
g = 0, θ ≥ 0, crI(x;µ) = (φi(x)ψi(x) − µ)pi=1. The penalization scheme (21) has
g(x;µ) = 1

µ
Π(φ(x), ψ(x)), θ = 0, and crE(x;µ), c

r
I(x;µ) are not needed. Defining

c̄E := (cE , c
s
E , c

r
E), c̄I := (cI , c

s
I , c

r
I , φ, ψ) and f̄ := f + g now yields the (parameter-

ized) standard NLP formulation

(26) min
x∈Rnx

f̄(x;µ) s.t. c̄E(x; τ, µ) = 0, c̄I(x; τ, µ) ≥ 0.

In the context of our primal heuristic a final remark is in order. Since we are pri-
marily interested in finding feasible solutions of the original MINLP quickly rather
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than solving the approximating MPEC with high accuracy, we do not attempt to
solve an entire sequence NLP(µk) with µk → 0. Instead we take a more aggressive
approach and try to solve only a single instance NLP(µ) where the parameter µ > 0
is fixed at a carefully chosen problem-specific value.

3. Relations of the Model Classes

This section briefly highlights basic theoretical relations between the models
presented in the last section. We focus on feasible points and not on optimality
and stationarity because our main topic here is the primal heuristic.

The first result gives a relation between feasible points of the original model
2-state-C0-MINLP and its first reformulation C0-MPEC.

Lemma 2. Let P be a 2-state-C0-MINLP in the form (2) and let Q be a reformula-
tion as C0-MPEC in the form (12). Then for every Q-feasible point x∗Q there exists

a P -feasible point (x∗P , z
∗
P ). Conversely, if there is no Q-feasible point, P is also

infeasible. Thus, there is a one-to-one correspondence of feasible points between
2-state-C0-MINLP models and their C0-MPEC reformulations.

Proof. The claim follows directly from Def. 1 and Lemma 1. �

To obtain binary decisions z∗P from x∗Q the complementarity constraints of C0-
MPEC are evaluated at the solution x∗Q. Then the states are determined according

to Def. 1 and (4). If a complementarity constraint is biactive, i.e. both characteristic
functions evaluate to zero, the discrete state is arbitrary.

The second transition step, from C0-MPEC to C2-MPEC, has a genuinely heuris-
tic flavor: pointwise convergence of the smoothing functions for τ → 0 does not
necessarily imply any useful convergence of C2-MPEC-feasible sets to C0-MPEC-
feasible sets. Moreover, the smoothing parameter τ is not driven to zero but has to
be fixed at some positive value. For complex application problems one will typically
try problem-specific smoothings and parameter tuning anyway, and the smoothing
error is often smaller than other model inaccuracies. If the overall heuristic still
fails, one simply has to rely on computationally more expensive rigorous methods.

The properties of the transition from C2-MPEC to C2-NLP depend on the reg-
ularization scheme being used. We will discuss penalization and relaxation in the
following. To this end, some basic MPEC theory is needed [21, 36, 39] and we
consider the standard MPEC formulation:

min
x

f(x)(27a)

s.t. cE(x) = 0, cI(x) ≥ 0,(27b)

φi(x)ψi(x) = 0, i = 1, . . . , p,(27c)

φi(x), ψi(x) ≥ 0, i = 1, . . . , p.(27d)

Definition 2. We say that the MPEC linear independence constraint qualification
holds for an MPEC-feasible point x if and only if the standard LICQ holds for the
entire constraints system with the exception of complementarity constraints (27c):

(28) cE(x) = 0, cI(x) ≥ 0, φi(x) ≥ 0, ψi(x) ≥ 0.

For the following, we define several sets of active indices,

Ac(x) = {i ∈ I : ci(x) = 0} ,(29a)

Aφ(x) = {i ∈ {1, . . . , p} : φi(x) = 0} ,(29b)

Aψ(x) = {i ∈ {1, . . . , p} : ψi(x) = 0} .(29c)

The next theorem extends standard first-order KKT conditions for NLP to MPEC.
A proof can be found in [36].
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Theorem 1. Let x∗ be a minimizer of (27) and let MPEC-LICQ hold at x∗. Then
there exist dual variables λ∗E ∈ R

|E|, λ∗I ∈ R
|I| and γ∗φ, γ

∗
ψ ∈ R

p so that

∇f∗ − ∇c∗E
T λ∗E − ∇c∗I

T λ∗I − ∇φ∗ T γ∗φ − ∇ψ∗ T γ∗ψ = 0,(30a)

c∗E = 0, c∗I ≥ 0, φ∗i ≥ 0, ψ∗
i ≥ 0,(30b)

φ∗i = 0 or ψ∗
i = 0, i = 1, . . . , p,(30c)

c∗i λ
∗
Ii
= 0, i ∈ I, φ∗i γ

∗
φi

= 0 and ψ∗
i γ

∗
ψi

= 0, i = 1, . . . , p,(30d)

λ∗Ii ≥ 0, i = 1, . . . , p,(30e)

γ∗φi
≥ 0, γ∗ψi

≥ 0, i ∈ A∗
φ ∩ A∗

ψ.(30f)

The superindex ∗ indicates function evaluation at x∗. Condition (30a) corre-
sponds to standard dual feasibility, (30b) and (30c) cover primal feasibility of (27),
and (30d) is the standard complementarity of inequalities and their multipliers.
Finally (30e) and (30f) correspond to nonnegativity of the multipliers of inequal-
ity constraints. Note that the last condition is only required for so called corner
pairings [24], i.e. complementarity pairings satisfying φi(x

∗) = ψi(x
∗) = 0.

Theorem 1 is the basis of MPEC stationarity concepts [36]:

Definition 3. Let x∗ be MPEC-feasible, i.e. (30b) and (30c) hold, and assume that
there exist dual variables λ∗E , λ

∗
I , γ

∗
φ, γ

∗
ψ satisfying (30a)–(30e). Then x∗ is called

(1) strongly stationary if in addition (30f) holds,
(2) C-stationary if in addition γ∗φi

γ∗ψi
≥ 0.

After these preparations we can discuss the main convergence results of MPEC
regularization schemes for µ→ 0.

For the relaxation scheme (19) it is shown in [39] that the sequence of stationary
points of the relaxed MPECs converge to C-stationary points if the MPEC-LICQ
condition holds in the limit. In [20] it is shown that this scheme in fact converges
to C-stationary points under the milder assumption of MPEC-MFCQ.

Theoretical results for the penalization scheme can be found in [21]. For the
penalty objective (21) in particular, convergence to C-stationary points is obtained
if MPEC-LICQ holds in the limit.

Stronger convergence results can be proved under stronger assumptions such as
the weak second order necessary condition or upper level strict complementarity. In
particular, both schemes deliver MPEC-feasible accumulation points in these cases,
which is sufficient for our purpose of constructing a primal heuristic.

4. Application: Gas Network Optimization

The techniques just presented are now applied as a primal heuristic for a planning
problem in gas transport. We model the gas network as a directed graph G =
(V,A). The node set V consists of entries V+, exits V− and junctions V0, and
the arc set A consists of pipes Api, resistors Are, valves Ava, control valves Acv

and compressor groups Acg. A nomination defines the amounts of all flows that
are supplied or discharged by entry and exit customers. In addition, a nomination
determines bounds for the gas pressure as well as specific values of certain gas
quality parameters.

We address a problem referred to as validation of nominations (NoVa), which
is to decide whether a given nomination can be served by some feasible stationary
network operation. Because of discrete decisions at active elements (status of valves,
control valves and compressor groups) and the mostly nonlinear and partly non-
smooth physical models of network elements this task leads to a nonsmooth MINLP
feasibility problem. If successful, our heuristic will thus deliver solutions directly.
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Various related problems of the gas transport industry have been addressed in
the literature. In [8, 30, 45] one finds first (often heuristic) attempts at mixed-
integer nonlinear optimization, addressing single compressor groups under fixed
operating conditions. Later research incorporates more detailed physical models [5,
46], and more recently also additional discrete aspects and network elements [9]. For
large-scale real-world network models MIP-driven approaches have been developed
in [27, 28, 32, 11] together with problem-specific heuristic enhancements [26]. NLP-
oriented investigations include [4, 34, 35] for stationary optimization, [14, 15, 41] for
the transient case and [13] where specific MIP and NLP approaches are compared.
The work presented here results from the large industry project ForNe that aims
at developing mathematical methods for all kinds of network planning problems.
Publications in preparation related to the ForNe project include [17, 22, 31, 38,
37]. ForNe is funded by Open Grid Europe GmbH. The scientific project partners
are Friedrich-Alexander Universität Erlangen-Nürnberg, Konrad Zuse Zentrum für
Informationstechnik Berlin (ZIB), Universität Duisburg-Essen, Weierstraß Institut
für Angewandte Analysis und Stochastik (WIAS), Humboldt Universität zu Berlin,
Technische Universität Darmstadt and Leibniz Universität Hannover.

4.1. Model. In this section the C0-MINLP model of the NoVa problem is pre-
sented along with the smoothed MPEC reformulation C2-MPEC. As we wish to
obtain results quickly, we use a reasonably simplified model rather than the highly
detailed model developed in [37]. For instance, the model presented is isothermal,
i.e. all temperatures are considered constant. If an approximate solution with cor-
rect discrete decisions is found, the accuracy of the continuous variables can still be
increased by an extra optimization run with a refined model. On the other hand,
real-world instances may contain discrete aspects of global nature like interdepen-
dencies of decisions that can currently not be handled by the model.

We introduce every network element model separately and show that the discrete
decisions lead to a 2-state-C0-MINLP in the form (2). The notation is similar to
the previous sections except that subindices now refer to network elements or sets
thereof. For instance, xi denotes the variables of the component model of node i,
and cApi

denotes the constraints of the component models of all pipes.

4.1.1. Nodes. Every node i ∈ V has a gas pressure variable with simple bounds,
pi ∈ [p−i , p

+
i ]. The flows at node i satisfy a mass balance equation

(31) 0 = cflowi (x) =
∑

a∈δ−i

qa −
∑

a∈δ+i

qa + di,

where di is the externally supplied flow:

(32) di ≥ 0 for i ∈ V+, di = 0 for i ∈ V0, di ≤ 0 for i ∈ V−.

The complete (smooth) node model reads

(33) 0 = ci(x) = cflowi (x), xi = pi.

4.1.2. Pipes. Gas dynamics in pipes a = ij ∈ Api are properly described by the
Euler equations for compressible fluids: a PDE system involving mass, momentum
and energy balances. Consider a cylindrical pipe with diameter D, cross-sectional
area A, roughness k and slope s ∈ [−1,+1] (the tangent of the inclination angle).
For the isothermal and stationary case considered here, the mass balance (continuity
equation) yields constant mass flow q along the pipe, the energy equation is not
needed, and we are left with the stationary momentum equation

(34)
∂p

∂x
+
q2

A2
∂x

1

ρ
+ gρs+ λ(q)

|q|q

2A2Dρ
= 0.
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Here g denotes gravitational acceleration, and the friction coefficient λ(q) is given
in terms of the Reynolds number Re(q): for laminar flow by the law of Hagen–
Poiseuille,

(35) λHP(q) =
64

Re(q)
, Re(q) =

D

Aη
|q|, |q| ≤ qcrit

and for turbulent flow by the empirical implicit model of Prandtl–Colebrook,

(36)
1

√

λPC(q)
= −2 log10

(

2.51

Re(q)
√

λPC(q)
+

k

3.71D

)

, |q| > qcrit.

The state quantities pressure p, density ρ and temperature T in (34) are coupled
by an equation of state; we use the thermodynamical standard equation

(37) ρ = ρ(p, T ) =
p

Rsz(p, T )T
,

where Rs is the specific gas constant. The compressibility factor z(p, T ) is given
by an empirical model; here we use a formula of the American Gas Association
(AGA),

(38) z(p, T ) = 1 + 0.257
p

pc
− 0.533

p/pc
T/Tc

,

where pc and Tc denote the pseudocritical gas pressure and temperature.
The ODE (34) essentially yields the pressure loss along pipe a for which various

approximation formulas exist. We use a quadratic approximation of Weymouth
type,

0 = cp-lossa (x) = p2j −

(

p2i − Λaza,mλaqa|qa|
eSa − 1

Sa

)

e−Sa ,(39)

0 = cslopea (x) = Saza,m −
2Lag

RsT
sa.(40)

The coefficient Λa and inclination variable Sa depend on pipe data like length La
and slope sa, and on an approximate mean value za,m of the compressibility factor,

0 = cz-mean
a (x) = za,m − z(pa,m, T ),(41)

0 = cp-mean
a (x) = pa,m −

2

3

(

pi + pj −
pjpj
pi + pj

)

.(42)

The friction variable λa in cp-lossa (39) has to satisfy the nonsmooth constraint

(43) 0 = cHPPC
a (x) = λa −

{

λHP(qa), qa ≤ qcrit,

λPC(qa), qa > qcrit.

The complete pipe model then reads

(44) 0 = ca(x) =

















cp-lossa (x)

cp-mean
a (x)

cz-mean
a (x)

cHPPC
a (x)

cslopea (x)

















, xa =

















qa

za,m

pa,m

λa

Sa

















.
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4.1.3. Pipe Model Reformulation: Smoothing. The pipe model is discontinuous at
qa = qcrit due to cHPPC

a , and second-order discontinuous at qa = 0 due to the term
qa|qa| in c

p-loss
a . We replace the term λaqa|qa| in (39) and constraint (43) by a new

variable φa defined by a smooth constraint,

0 = cp-loss-sa (x) = p2j −

(

p2i − Λaza,mφa
eSa − 1

Sa

)

e−Sa ,(45)

0 = cHPPC-s
a (x) = φa − raqa

(

√

q2a + e2a + ba +
ca

√

q2a + d2a

)

.(46)

This provides an asymptotically correct second-order approximation of λaqa|qa| if
the parameters ra, ba, ca, da, ea are suitably chosen [6, 37]. In summary, we obtain
the smooth pipe model

(47) 0 = csmooth
a (x) =

















cp-loss-sa (x)

cp-mean
a (x)

cz-mean
a (x)

cHPPC-s
a (x)

cslopea (x)

















, xsmooth
a =

















qa

za,m

pa,m

φa

Sa

















.

4.1.4. Resistors. Resistors a = ij ∈ Ars are fictitious network elements modeling
the approximate pressure loss across gadgets, partly closed valves, filters, etc. The
pressure loss has the same sign as the mass flow and is either assumed to be (piece-
wise) constant,

(48) 0 = cp-loss-lina (x) = pi − pj − ξa sign(qa),

or (piecewise) quadratic according to the law of Darcy–Weisbach,

(49) 0 = cp-loss-nla (x) = pi − pj −
8ζa
π2D4

a

qa|qa|

ρa,k
.

Here ζa is the resistance coefficient and ρa,k is the inflow gas density according to
the equation of state (37),

(50) 0 = cdens-ina (x) = ρa,k − ρ(pk, T ) with k :=

{

i, qa ≥ 0,

j, qa < 0.

The compressibility factor z has to be evaluated at the inflow node as well,

(51) 0 = cz-ina (x) = za,k − z(pk, T ).

In summary, the piecewise constant resistor model (a ∈ Alin-rs) reads

(52) 0 = ca(x) = cp-loss-lina (x), xa = qa,

and the piecewise quadratic resistor model (a ∈ Anonlin-rs) reads

0 = ca(x) =







cp-loss-nla (x)

cdens-ina (x)

cz-ina (x)






, xa =







qa

za,k

ρa,k






.(53)

4.1.5. Resistor Model Reformulation: Smoothing. The resistor models (52) and (53)
are nonsmooth because of three reasons:

(1) the discontinuous sign function in (48),
(2) the second-order discontinuous term |qa|qa in (49),
(3) the direction dependence of the inflow gas density ρa,k in (49).



12 M. SCHMIDT, M. C. STEINBACH, B. M. WILLERT

Note that items 1 and 3 violate the assumptions made so far. However, resistors play
a minor role in the NoVa problem and it suffices to include a coarse approximation
in the model, so we just proceed with a problem-specific smoothing.

In the piecewise constant resistor model, we use the identity sign(x) = x/|x|
together with the standard smoothing of |x|. For a ∈ Alin-rs this yields

(54) 0 = csmooth
a (x) = cp-loss-lin-sa (x) = pi − pj − ξa

qa
√

q2a + τ
.

The same approximation of the absolute value function is applied to the piecewise
quadratic resistor model (49):

(55) 0 = cp-loss-nl-sa (x) = pi − pj −
8ζa
π2D4

a

qa
√

q2a + τ

ρa,k
.

Finally, the direction dependence of the inflow gas density ρa,k is addressed by using
the mean density

(56) 0 = cdens-mean
a (x) = ρa,m −

1

2
(ρa,in + ρa,out) .

As a consequence, we need to evaluate the equation of state and the compressibility
factor at both nodes i and j,

cdens-ina = ρa,in − ρ(pi, T ), cdens-outa = ρa,out − ρ(pj , T ),(57)

cz-ina = za,in − z(pi, T ), cz-outa = za,out − z(pj , T ).(58)

This yields for a ∈ Anonlin-rs the smoothed model

(59) 0 = csmooth
a (x) =





















cp-loss-nl-sa (x)

cdens-ina (x)

cdens-outa (x)

cdens-mean
a (x)

cz-ina (x)

cz-outa (x)





















, xsmooth
a =





















qa

za,in

za,out

ρa,in

ρa,out

ρa,m





















.

4.1.6. Valves. Valves a = ij ∈ Avl have two discrete states: open and closed. Across
open valves, the pressures are identical and the flow is arbitrary within its technical
bounds,

(60) pj = pi, qa ∈ [q−a , q
+
a ].

Closed valves block the gas flow and the pressures are arbitrary within their bounds,

(61) qa = 0, pi ∈ [p−i , p
+
i ], pj ∈ [p−j , p

+
j ].

This behavior can be modeled with one binary variable za ∈ {0, 1} together with
big-M constraints:

0 ≤ cflow-lb
a (x, z) = qa − zaq

−
a ,(62)

0 ≤ cflow-ub
a (x, z) = −qa + zaq

+
a ,(63)

0 ≤ cp-coupl-1a (x, z) =Ma,1 (1− za)− pj + pi,(64)

0 ≤ cp-coupl-2a (x, z) =Ma,2 (1− za)− pi + pj .(65)

The resulting valve MINLP model reads

(66) 0 ≤ ca(x, z) =











cflow-lb
a (x, z)

cflow-ub
a (x, z)

cp-coupl-1a (x, z)

cp-coupl-2a (x, z)











, xa = qa.
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4.1.7. Valve Model Reformulation: Complementarity Constraints. It is easily seen
that (66) directly fits into the concept of 2-state model aspects. Here, the model as-
pect valve has the two states A1 = open and A2 = closed. They are non-disjunctive
if 0 ∈ [q−a , q

+
a ] and [p−i , p

+
i ] ∩ [p−j , p

+
j ] 6= ∅. The characteristic functions are

(67) χopen
a (x) = pj − pi, χclosed

a (x) = qa.

According to Sect. 2, the 2-state-MINLP model (66) can be equivalently reformu-
lated using a complementarity constraint:

(68) 0 = cmpec
a (x) = cvl-statea (x) = χopen

a (x)χclosed
a (x), xmpec

a = qa.

It offers two advantages: no binary variables are required and the number of con-
straints reduces from four to one.

4.1.8. Control Valves. Control valves a = ij ∈ Acv are used to decrease the gas
pressure in a technically prescribed direction (which we define as the graph direction
i → j). They possess three discrete states: active, bypass and closed. An active
control valve reduces the inflow pressure by a certain amount,

(69) pj = pi −∆pa, ∆pa ∈ [∆p−a ,∆p
+
a ], qa ∈ [q−a , q

+
a ] ∩ R+.

A closed control valve acts like a closed regular valve, leading to the simple state
model (61). A control valve in bypass mode acts like an open regular valve, with
arbitrary flow direction and without decreasing the pressure, cf. (60). Our complete

mixed-integer linear model is based on the variable vector xa = (qa,∆pa)
T

and

za = (z1,a, z2,a)
T
, where z1,a defines if the control valve is open (z1,a = 1) or closed

(z1,a = 0) and z2,a defines if it is active (z2,a = 1) or not (z2,a = 0). In terms of the
constraints

0 ≤ cflow-lb-open
a (x, z) = qa − za,1q

−
a ,(70a)

0 ≤ cflow-ub-open
a (x, z) = −qa + za,1q

+
a ,(70b)

0 ≤ cflow-lb-active
a (x, z) = qa − (1− za,2) q

−
a ,(70c)

0 ≤ cp-coupl-1a (x, z) =Ma,1 (1− za,1) + ∆p+a za,2 − (pi − pj) ,(70d)

0 ≤ cp-coupl-2a (x, z) =Ma,2 (1− za,1)−∆p−a za,2 − (pj − pi) ,(70e)

0 ≤ cconsistent-statesa (x, z) = za,1 − za,2,(70f)

the resulting mixed-integer model then becomes
(71)

0 ≤ ca(x, z) =





















cflow-lb-open
a (x, z)

cflow-ub-open
a (x, z)

cflow-lb-active
a (x, z)

cp-coupl-1a (x, z)

cp-coupl-2a (x, z)

cconsistent-statesa (x, z)





















, xa =

(

qa

∆pa

)

, za =

(

z1,a

z2,a

)

.

4.1.9. Control Valve Model Reformulation: Complementarity Constraints. For our
reformulation, we require ∆p−a = 0. However, this appears to be a moderate
restriction in practice: it holds in all cases we have encountered. With this, we can
model control valves as a model aspect with two non-disjunctive states A1 = open
and A2 =closed and the characteristic functions

(72) χopen
a (x) = pj − pi +∆pa, χclosed

a (x) = qa.
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The state open can then be distinguished in active or bypass depending on the value
of ∆pa. Thus, we have the MPEC reformulation

(73) 0 = ccv-statea (x) = χopen
a (x)χclosed

a (x).

In addition, the restriction to nonnegative flows in the active state is modeled as

(74) 0 ≤ ccv-active-flowa (x) = ∆paqa.

The complete MPEC type control valve model now reads

0 = c
mpec
a,E (x) = ccv-statea (x), 0 ≤ c

mpec
a,I (x) = ccv-active-flowa (x),

xa =

(

qa
∆pa

)

.
(75)

4.1.10. Compressor Groups. Compressor groups a = ij ∈ Acg typically consist of
several compressor units of different types that can be combined in various con-
figurations to increase the gas pressure; see [37] and the upcoming publications
[17, 22, 31].

For our primal heuristic we use a substantially simplified model where compressor
groups can work in the same states as control valves: open, closed and active. The
only difference is the sign of the pressure control variable ∆pa in the characteristic
function (72). Thus we have sign changes in (70d) and (70e), yielding adapted
mixed-integer and MPEC formulations corresponding to (71) and (75), respectively.

4.2. Model Summary. In the preceding sections we have described components
of gas transport networks, both as nonsmooth nonlinear mixed-integer models and,
if necessary, as smooth MPEC reformulations. Now we combine the components
into complete models.

The complete feasibility problem in C0-MINLP form reads

(76) ∃? (x, z) : cE(x) = 0, cI(x, z) ≥ 0,

where

(77) cE(x, z) =









cV(x)
cApi

(x)
cAlin-rs

(x)
cAnonlin-rs

(x)









, cI(x, z) =





cAva
(x, z)

cAcv
(x, z)

cAcg
(x, z)





and

(78) x = (xV, xApi
, xAlin-rs

, xAnonlin-rs
, xAva

, xAcv
, xAcg

), z = (zAva
, zAcv

, zAcg
).

Note that the equality constraints do not contain any discrete aspects in our
case. Here nonsmooth aspects arise in all passive elements: cApi

(x), cAlin-rs
(x),

cAnonlin-rs
(x). Discrete decisions (with “genuine” binary variables) arise in the ac-

tive elements: cAva
(x, z), cAcv

(x, z), cAcg
(x, z). The node model cV(x) is smooth and

will be kept in its original form.
Collecting all smoothed and complementarity constrained components yields the

following C2-MPEC model:

(79) ∃? x : s.t. cE(x) = 0, cI(x) ≥ 0,
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where

(80) cE(x) =



























cV(x)

csmooth
Api

(x)

csmooth
Alin-rs

(x)

csmooth
Anonlin-rs

(x)

c
mpec
Ava

(x)

c
mpec
Acv,E

(x)

c
mpec
Acg,E

(x)



























, cI(x) =

(

c
mpec
Acv,I

(x)

c
mpec
Acg,I

(x)

)

and

(81) x =
(

xV, x
smooth
Api

, xAlin-rs
, xsmooth

Anonlin-rs
, xmpec

Ava
, xmpec

Acv
, xmpec

Acg

)

.

Finally the C2-MPEC model (79) is regularized by any of the techniques from
Sect. 2. The reformulation is generic except for one aspect. Some of the complemen-
tarity constraint pairings in cE(x) do not have to be nonnegative as in the standard
MPEC (27). For instance, this can happen for flow variables with a negative lower
bound. In this case we square the corresponding functions so that condition (9) in
Def. 1 is satisfied. We denote the regularization of (79) by C2-NLP.

The primal heuristic for our concrete application actually involves additional
problem-specific steps. As already mentioned in Sect. 4.1.10, we use an idealized
compressor group model that disregards individual compressor units. Solutions of
the above C2-NLP (stage-1 ) are therefore refined by solving a second NLP (stage-
2 ) that incorporates discrete decisions of individual compressor units by a special
convexification approach; see [22] for details. If both stages are successful, we finally
check the stage-2 feasible solution with a highly accurate validation NLP [37] to
decide whether it is sufficiently accurate to be used in practice. Full details of these
and other aspects of the application problem will be given in the future papers
[22, 31, 17, 37, 38].

4.3. Numerical Results. We have tested the primal heuristic on the northern
high-calorific gas network of our industry partner Open Grid Europe GmbH. The
network model contains 452 pipes, 9 resistors, 35 valves, 23 control valves and 6
compressor groups. Gas is supplied at 31 entry nodes and discharged at 129 exit
nodes. The intermediate C2-MPEC models are regularized by penalization; the re-
sulting NLP models are formulated with the modeling language GAMS v23.8.2 [18]
and solved with the interior point code Ipopt v3.10 [44] on a Desktop PC with an In-
tel i7 920 CPU and 12GiB RAM. The C++ software framework LaMaTTO++ [1] is
used to implement the models and to interface the problem data. LaMaTTO++ is a
framework for modeling and solving mixed-integer nonlinear programming problems
on networks. It was originally developed by the working groups of Jens Lang and
Alexander Martin and is now being used and extended within the ForNe project.

The test set includes some 12 000 NoVa instances of four different types: the
sets SN i, i = 2, 3, 4, and Expert. SN i, i = 2, 3, 4, are automatically generated
nominations. The generation process depends on the current set of contracts with
supplying and discharging customers and historical data about nominated entry
and exit capacities. The three sets of nominations mainly differ in how the con-
tracts are modeled within the generation process. The sets SN i are of increasing
degree of difficulty (see [22] for full details). The set Expert contains 40 manually
designed nominations from our industry partner that are intended to represent hard
instances.

The success rates are given in Table 1. The first column states the name of the
NoVa test set and the second column gives the number of instances in the set. The
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Test set Size Success rate (%)
stage-1 stage-2 NLP

SN2 3 882 100.0 90.34 72.1
SN3 4 077 100.0 85.45 65.0
SN4 4 227 99.97 88.24 59.0
Expert 40 100.0 47.50 30.0

Table 1. Success rate of primal heuristic on NoVa test sets.

Test set stage-1 stage-2 NLP
min max avg min max avg min max avg

SN2 1.8 26.3 7.5 0.3 65.5 1.0 0.8 11.7 1.1
SN3 2.0 27.6 10.3 0.2 51.6 1.1 0.5 4.0 1.4
SN4 2.3 28.6 10.5 0.3 50.4 1.2 0.9 5.3 2.1
Expert 5.0 40.8 11.4 0.9 4.7 2.0 1.1 1.7 1.3

Table 2. Min, max, and average Ipopt CPU time (seconds) of
primal heuristic on NoVa test sets.

Test set stage-1 stage-2 NLP
min max avg min max avg min max avg

SN2 74 913 263.4 11 2 345 39.0 22 256 31.2
SN3 78 969 365.2 6 3 000 44.3 11 62 33.6
SN4 90 996 371.0 13 1 700 46.7 25 68 34.4
Expert 157 692 322.1 29 137 61.9 28 40 31.4

Table 3. Min, max, and average Ipopt iterations of primal heuris-
tic on NoVa test sets.

following three columns show the percentage of instances that have successfully
passed stage-1, stage-2, and the final validation NLP, respectively. Table 2 offers
statistics of the CPU times of successful runs. For both stages and the validation
NLP, the minimum, maximum and average CPU times of the different test sets are
displayed. Similarly, Table 3 shows the minimum, maximum and average numbers
of iterations of the successful instances. The maximum allowed number of iterations
was set to 3 000.

In addition, the profiles in Fig. 1 and Fig. 2 display the distribution of the
required iterations and CPU time. More formally, if P denotes one of the test sets
and if tp, p ∈ P, is the considered performance measure for problem p (here: the
number of iterations or the CPU time), the plots show the graph τ 7→ 100|{p ∈
P : tp ≤ τ}|/|P |. Thus, the graphs display the percentage of feasible instances
that need at most τ iterations (or τ seconds) to be solved. The displayed data
represents stage-1, stage-2 and the validation NLP on test set SN3. The profiles of
the remaining test sets look essentially similar.

We see that stage-1 is successful on all instances but one, in spite of the smooth-
ings, MPEC regularization and other approximations that are involved. This is
primarily due to the model simplifications employed here, in particular the ideal-
ized compressor group model. With the detailed compressor group model in stage
two, discrete decisions for individual compressor units are found for 85% to 90% of
the statistical nominations and for less than half of the expert nominations. Finally,
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Figure 1. Profiles of Ipopt iterations in stages 1, 2, and validation
NLP on test set SN3.

59% to 72% of all statistical nominations and 30% of the expert nominations pass
the high-accuracy validation NLP.

It is apparent how the success rate slowly decreases with increasing difficulty
of the test sets (see Table 1). In particular, the expert nominations really prove
to be hard from stage-2 on. This is because of the central role of the compressor
units: in hard cases they have to be operated close to their limits, and a highly
accurate model is required to distinguish feasible and infeasible operating points.
To lower the risk of missing feasible solutions early on, we therefore use increasingly
restrictive compressor models in the successive stages.

A further reason of failure can occur in case of approximately biactive comple-
mentarity constraints, i.e. complementarity constraints with small non-zero values
of both characteristic functions. Infeasible discrete decisions may then be deduced;
for instance, a valve may be considered to be closed although a very small flow is
actually required.

A comparison of the CPU times and iterations shows that most of the computa-
tional effort is spent on stage-1, taking about 10 s, while stage-2 and the validation
NLP roughly require another second each. This indicates that the simplified stage-
1 model is still reasonably hard (it encompasses the major difficulties) and that
stage-2 can actually be considered as a refinement step. The profile plots support
this interpretation, since the stage-1 curves are located significantly to the right of
both the stage-2 and the validation NLP curves.

5. Summary

We have proposed a general reformulation technique as a primal heuristic for
a certain class of nonsmooth mixed-integer nonlinear optimization problems. Our
approach explicitly distinguishes discrete aspects and nonsmooth but continuous
aspects. The former are handled with complementarity constraints; the latter are
handled by generic or problem-specific smoothing techniques. Additional regular-
izations are applied to obtain a smooth and regular nonlinear optimization problem
that can be solved by standard NLP solvers to produce (approximately) feasible
solutions of the underlying nonsmooth MINLP efficiently. As a proof of concept, we
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Figure 2. Profiles of Ipopt CPU time (seconds) in stages 1, 2, and
validation NLP on test set SN3.

have successfully applied our heuristic to the problem of validation of nominations
in real-life gas networks.
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[35] R. Z. Ŕıos-Mercado, S. Wu, L. R. Scott, and A. E. Boyd, A reduction technique for nat-

ural gas transmission network optimization problems, Ann. Oper. Res., 117 (2002), pp. 217–
234.

[36] H. Scheel and S. Scholtes, Mathematical programs with complementarity constraints: Sta-

tionarity, optimality and sensitivity, Math. Oper. Res., 25 (2000), pp. 1–22.
[37] M. Schmidt, M. C. Steinbach, and B. M. Willert, High detail stationary optimization

models for gas networks — Part 1: Model components., IfAM Preprint 94, Inst. of Applied
Mathematics, Leibniz Universität Hannover, 2012. Submitted.

[38] , High detail stationary optimization models for gas networks — Part 2: Validation

and results. In preparation, 2013.
[39] S. Scholtes, Convergence properties of a regularization scheme for mathematical programs

with complementarity constraints, SIAM J. Optim., 11 (2001), pp. 918–936.

[40] O. Stein, J. Oldenburg, and W. Marquardt, Continuous reformulations of discrete-

continuous optimization problems, Comput. Chem. Eng., 28 (2004), pp. 1951–1966.
[41] M. C. Steinbach, On PDE solution in transient optimization of gas networks, J. Comput.

Appl. Math., 203 (2007), pp. 345–361.
[42] D. Sun and L. Qi, On NCP-functions, Comput. Optim. Appl., 13 (1999), pp. 201–220.

Computational Optimization - a Tribute to Olvi Mangasarian, Part II.
[43] J. P. Vielma and G. L. Nemhauser, Modeling disjunctive constraints with a logarithmic

number of binary variables and constraints, in Integer Programming and Combinatorial Opti-
mization, A. Lodi, A. Panconesi, and G. Rinaldi, eds., vol. 5035 of Lecture Notes in Computer
Science, Springer Berlin Heidelberg, 2008, pp. 199–213.
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