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Summary. Industrial robots have greatly enhanced the performance of automated

manufacturing processes during the last decades. International competition, however,

creates an increasing demand to further improve both the accuracy of o�-line pro-

gramming and the resulting cycle times on production lines. To meet these objectives,

model based optimization is required. We describe in detail the development of a

generic dynamic robot model, specialize it to an actual industrial robot KUKA IR 761,

and discuss the problem of dynamic calibration. E�cient and robust trajectory opti-

mization algorithms are then presented which, when integrated into a CAD system,

are suitable for routine application in an industrial environment. Our computational

results for the KUKA IR 761 robot performing a real life transport maneuver show that

considerable gains in productivity can be achieved by minimizing the cycle time.

AMS Subject Classi�cation: 49M37, 65K10, 70B15, 70E15, 70Q05, 73C50,

90C30, 90C90.
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1 Introduction

Robot manipulators play an important role in modern industrial manufacturing

processes; nowadays they are particularly common on automated production

lines in the automobile industry. Typical jobs performed by robots range from

welding, gluing, or spray-painting to transport and assembly tasks. However,

perpetually increasing quality standards and international competition as well as

economic reasons impose high demands on precision and reliability, and specif-

ically on the speed of industrial robots, thus calling for sophisticated motion

planning techniques.

Today the classical on-site teaching is still common practice. Relying on

the knowledge and the intuition of experienced personnel, this method is useful

�
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to implement accurate, collision-free trajectories in a comparatively easy way.

More advanced CAD based motion planning systems o�er the advantage of de-

signing robot maneuvers o� line, thus cutting down production losses during

the implementation phase. However, while this works well in relatively slow

assembly tasks, the resulting trajectories are less accurate in high speed gluing

or transport maneuvers. The reason is that commercial CAD systems use kine-

matic models which include only the robot geometry and worst case restrictions

on velocities and accelerations of individual joints and of the tool center point

(TCP). Such models are inadequate for controlling the complex nonlinear dy-

namics of very fast maneuvers. This leads to tracking errors and hence requires

time consuming manual corrections when implementing a new manufacturing

process; furthermore, predicted cycle times are often exceeded.

To enable reliable o�-line programming of fast maneuvers, validated dynamic

robot models are needed which include centrifugal, gravitational and Coriolis

forces, and possibly joint elasticities, friction, motor dynamics, etc.

As soon as reliable dynamic models are available, mathematical optimiza-

tion algorithms can be applied to minimize the cycle time of certain maneuvers.

Scienti�c investigations on robot trajectory optimization began already in the

late sixties; among the earliest is the work of Kahn [28] and Kahn and Roth [29].

During the last decade the topic has received great interest in the academic com-

munity, and various approaches have been proposed based on di�erent problem

formulations and di�erent types of robot models. Since a rigorous treatment of

realistic problems turns out to be very hard, especially if geometric constraints

are speci�ed for collision avoidance, many approaches treat greatly simpli�ed

problems or apply heuristic optimization strategies. For a comprehensive survey

of the literature (until 1990) the reader is referred to [14].

One of the most important types of trajectory optimization problems is

known as the prescribed path problem. The TCP is required to move along a

given (parameterized) curve in cartesian space, with prescribed gripper orien-

tation in each point. It is assumed that these data de�ne the joint positions

uniquely, so that only the velocity pro�le along the path remains to be optimized.

This reduces the problem to a one-dimensional optimal control problem which is

very well understood; furthermore, very general constraints on actuator torques,

joint speeds, etc. can easily be treated. A highly e�cient solution algorithm tai-

lored to the minimum time case was �rst proposed by Bobrow, Dubowsky and

Gibson [5, 6], and further developed by Pfei�er and Johanni [39]; in addition

Johanni proposes Dynamic Programming to handle other performance criteria,

and subjects the path itself to an outer optimization to �nd optimal trajecto-

ries [27]. The prescribed path problem is an appropriate formulation for many

machining tasks such as, e.g., grinding or applying varnish.

The second major type of trajectory optimization problems is known as the

point-to-point (PTP) problem: only the initial and �nal points, say A;B, are

given, but the shape of the trajectory is subject to optimization. This problem

formulation is appropriate, e.g., for transport maneuvers and for unloaded robot

motion to start a new task at B after �nishing a task at A. Our notion of the

PTP problem, however, is more general. We allow restrictions that �x some
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degrees of freedom along the trajectory but that do not necessarily determine

all joint angles uniquely. A typical example is a gluing maneuver where the

adhesive emanating from a spray gun is deposited along a prescribed curve,

but the TCP path and orientation may vary in certain ranges. Although the

prescribed path problem is in principle included in our generalized class of PTP

problems, we distinguish this case because of its very special properties.

A precise mathematical statement of the PTP problem is given in the form

of a rather general trajectory optimization problem (TOP). The aim is to deter-

mine a state function x = (x

1

; x

2

) and a control function u on time interval [0; T ]

such that a performance criterion � is minimized subject to path constraints g,

multipoint boundary conditions r

i

, and di�erential-algebraic equations (DAE)

describing the robot dynamics:

�(T; x(T )) = min

_x

1

(t)� f

1

(t; x(t); u(t)) = 0

f

2

(t; x(t); u(t)) = 0

g(t; x(t); u(t)) 2 [g

min

(t); g

max

(t)]

r

1

(t

1

; x(t

1

)) + � � �+ r

k

(t

k

; x(t

k

)) = 0

(1)

Algebraic equations f

2

may result from the problem under consideration (if the

TCP path is prescribed, for instance) or from a descriptor form model of the

robot's multibody dynamics. If necessary, higher index DAE are reduced to

index 1 and treated numerically by invariant projection [46]; in this case the

invariants are also contained in f

2

. State-of-the-art algorithms for numerical in-

tegration of multibody DAE can be found, e.g., in [48, 13, 58, 47]. In the context

of robot trajectory optimization, however, these are of minor importance.

Previous work by some of the authors and co-workers aimed at developing

physical insight in the dynamic interactions of a robot and �nding out how much

can be gained in PTP optimization; investigations along these lines study opti-

mal basic maneuvers for basic robot types with two or three axes [30, 31, 52, 53].

The physical potential for optimization is given on all robots with revolute joints;

these cause nonlinear dynamic interactions that can be exploited to have all mo-

tors support the one with the hardest task. This simple principle of cooperation

yields considerable savings, often produced by surprisingly esthetic movements.

Although the behavior of such solutions can be physically explained, however,

it is impossible to �nd near-optimal trajectories through intuition and experi-

ence. Instead, one has to solve the trajectory optimization problem, and hence

sophisticated mathematical algorithms are required.

The direct boundary value problem (BVP) approach due to Bock has proven

very successful for this purpose; its �rst implementation in the multiple shooting

code MUSCOD [11] was used in most of the investigations mentioned in the pre-

vious paragraph. Recent algorithmic developments [50, 45] based on the direct

BVP approach allow an e�cient and robust treatment of large scale problems

with many inequality constraints (cf. section 4); this is crucial for solving real

life optimization problems in an industrial environment.
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Figure 1: The 6-joint industrial robot KUKA IR 761/125/150.0

The paper is organized as follows. In section 2, dynamic robot modeling is

discussed thoroughly, including a detailed presentation of multibody dynamics

for a general kinematic chain and of the speci�c components for a model of the

robot KUKA IR 761/125/150.0 shown in Fig. 1. Section 3 provides introductory

information and some references on the issue of model calibration. The direct

boundary value problem approach is presented in section 4 as the basic means to

discretize constrained trajectory optimization problems, and recent algorithmic

developments that allow an e�cient treatment by SQP methods are described.

In section 5, we give numerical optimization results and perform a sensitivity

analysis for the KUKA IR761 robot executing a real life transport maneuver.

Finally, we o�er an assessment of the practicability of the approach in section 6.

2 Dynamic modeling

The dynamic robot model is certainly a central constituent of any advanced

o�-line motion planning system. A good model has to satisfy two con
icting

objectives. It must include enough detail to represent the real behavior of the

robot with su�cient accuracy, and it should permit an e�cient, stable evalua-

tion not only of the model equations but also of their derivatives that are needed

in optimization. However, the necessary degree of detail may depend on the ac-

tual application and on the required accuracy. Therefore we suggest a modular,

hierarchical model structure which can be adapted to speci�c requirements by

switching individual components on or o�. In the following we develop such a

generic robot model. For each component we discuss important aspects con-

cerning model accuracy and the optimization context, and present the speci�c

form for the robot KUKA IR761. In most cases the practical model is assessed in

the framework of more general physical considerations to justify simpli�cations.

For an extensive presentation of general modeling issues in optimization see [54].
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2.1 General modeling assumptions

In this paper we consider industrial robots with electric drives. The robot links

are assumed to be rigid bodies connected by revolute or prismatic joints with a

single degree of freedom each, forming a multibody system with the topological

structure of a kinematic chain. A tool or load may be mounted on the last link.

The robot is actuated by servo motors through cycloidal or harmonic drives

with large gear ratios (� 100).

2.2 Multibody kinematics

The multibody model plays the role of a skeleton in every robot model; it

comprises the global mechanical coupling of the whole system, and requires by

far the largest e�ort in the numerical evaluation of robot dynamics. We begin

with the kinematic part of the multibody model.

2.2.1 Kinematic chain

We consider the �xed robot base as link 0; the remaining links are numbered 1

through N from base to tip where link k is connected to link k � 1 via joint k.

On each link we choose a reference point O

k

with inertial coordinates r

k

2 R

3

and a frame based at O

k

with inertial coordinates R

k

2 SO(3). The �xed base

frame (R

0

; r

0

) = (I; 0) will be our global reference frame. Relative orientation

and position (B

k

; l

k

) of frame k with respect to frame k � 1 are given by

R

k

= R

k�1

B

k

; r

k

= R

k�1

l

k

+ r

k�1

:

A combined representation of the rotational and translational components for

link frames and joint transformations is achieved by 4�4 homogeneous matrices

A

k

:=

�

R

k

r

k

0 1

�

; T

k

:=

�

B

k

l

k

0 1

�

:

The relative orientation of adjacent links is now written A

k

= A

k�1

T

k

, which

by recursion yields the simple matrix product representation A

k

= T

1

� � �T

k

.

On a moving robot, the joint transformations T

k

(�

k

) and therefore the frames

A

k

(�

1

; : : : ; �

k

) depend on the joint variables �

k

and hence on time.

2.2.2 Denavit-Hartenberg representation

The Denavit-Hartenberg representation [17] is commonly used in industry to re-

late a transformation matrix T

k

to its scalar joint variable and three more scalar

parameters describing the joint geometry. It requires the following convention

for placement of the link frames:

� The X axes of all frames are aligned in the same direction.

� Revolute joints rotate about their Z axes.

� Prismatic joints travel along their Z axes.
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joint � [deg] � [deg] a [m] d [m]

1 0 90 �0:99 0.25

2 �90 0 0 1.15

3 0 �90 0 0

4 0 90 �1:15 0

5 0 90 0 0

6 0 0 0 0

Table 1: Nominal Denavit-Hartenberg parameters of KUKA IR761

With these conventions we can describe the general joint transformation as

composition of four elementary transformations:

� Rotate an angle �

k

about the Z

k�1

axis.

� Translate a distance d

k

along the Z

k�1

axis.

� Translate a distance a

k

along the X

k�1

axis.

� Rotate an angle �

k

about the X

k

axis.

The resulting homogeneous transformation matrix is

T

k

= Rot(Z; �

k

) Trans(Z; d

k

) Trans(X; a

k

) Rot(X;�

k

)

=

0

B

B

@

cos �

k

� sin �

k

cos�

k

sin �

k

sin�

k

a

k

cos �

k

sin �

k

cos �

k

cos�

k

� cos �

k

sin�

k

a

k

sin �

k

0 sin�

k

cos�

k

d

k

0 0 0 1

1

C

C

A

:

Except for special robot arm constructions, the joint variable is �

k

in revolute

joints and d

k

in prismatic joints; the three remaining parameters are constant.

Without loss of generality, we will only address robots with revolute joints in the

following, such as the KUKA IR 761. Its Denavit-Hartenberg parameters (with

all joints in home position) are given in Table 1.

2.3 Multibody dynamics

In multibody kinematics, the representation of joint transformations by homo-

geneous Denavit-Hartenberg matrices is not only mathematically elegant but

also computationally e�cient. In multibody dynamics the situation is more

di�cult: we need �rst and second time derivatives to represent velocities and

accelerations, but matrix derivatives and multiplications, though mathemati-

cally elegant, are computationally ine�cient. It is common practice in rigid

body mechanics, however, to use vectors for both linear and angular velocities

and accelerations; this turns out to be a convenient and e�cient formulation for

our purpose. In the following we give a brief description of the precise mathe-

matical relation between orientation matrix derivatives and angular velocities.
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The linear velocity vectors are simply derivatives of the positions, but the

angular velocity vectors are not derivatives of any meaningful physical quan-

tity. Abstractly, the set of orientation matrices SO(3) � R

3�3

is a compact

3-dimensional C

1

-submanifold which has no global 3-parameter representation

without singularities.

Consider a point p �xed on a moving body. Its inertial position and velocity

are p

0

(t) = r(t) + R(t)p and _p

0

(t) = _r(t) +

_

R(t)p, respectively. The rotation

part can be written

_

Rp = !

0

� (Rp) = (R!)� (Rp) = R(! � p);

where ! and !

0

are the angular velocities in the body frame and inertial frame,

respectively. On the other hand, we have ! � p = ~!p where

~! :=

0

@

0 �!

3

!

2

!

3

0 �!

1

�!

2

!

1

0

1

A

= �~!

�

2 A(3)

is an antisymmetric matrix; the corresponding inertial angular velocity matrix is

~!

0

= R~!R

�

. (Asterisk superscripts denote transposition throughout the paper.)

The above relations de�ne a sequence of canonical linear isomorphisms be-

tween R

3

and the tangent space of SO(3) at R (the matrix velocity space),

T

R

SO(3) = RA(3)

�

=

A(3)

�

=

R

3

[ [ [ [

_

R = R~! $ ~! $ !

2.3.1 Spatial notation

The isomorphismA(3)

�

=

R

3

is now used to combine linear and angular velocities

and accelerations to 6-dimensional spatial vectors. We follow the exposition of

Jain [26] where more details can be found. All the quantities used below are

inertial quantities unless otherwise noted. Let ! and v be the angular and linear

velocity of a rigid body with respect to a point O (not necessarily on the body),

and N and F be the moment and force about and at O. The spatial velocity V ,

spatial acceleration �, and spatial force f are de�ned as

V (O) :=

�

!

v

�

; �(O) :=

_

V (O); f(O) :=

�

N

F

�

:

The central spatial object is the rigid body transformation operator for two

points O

i

and O

j

= O

i

+ l(i; j),

�(i; j) � �(l(i; j)) :=

�

I

~

l(i; j)

0 I

�

2 R

6�6

:

Depending on the spatial o�set l(i; j) only, �

�

(i; j) relates the spatial velocities

and accelerations at O

i

and O

j

according to

V (j) = �

�

(i; j)V (i) =

�

!(i)

v(i) + !(i)� l(i; j)

�

; �(j) = �

�

(i; j)�(i); (2)
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while �(i; j) describes the dual relation of spatial forces,

f(i) = �(i; j)f(j) =

�

N(j) + l(i; j)� F (j)

F (j)

�

: (3)

Finally we need the spatial inertia of a rigid body at the point O which is given

(in terms of the spatial inertia at the center of mass C) by the symmetric matrix

M(O) := �(p)M(C)�

�

(p) =

�

J(O) m~p

m~p

�

mI

�

; M(C) :=

�

J(C) 0

0 mI

�

:

Here J(O) = J(C) +m~p

�

~p is the body's moment of inertia about O, m is its

mass, and p = l(OC) is the vector from O to C.

2.3.2 Recursive Newton-Euler dynamics

Let us now return to the chain-structured robot. We have to connect the base

and N robot links through N joints. Let �

k

and T

k

denote the scalar joint

velocities and joint torques associated with joint positions �

k

. The (position-

dependent) geometry of each joint is represented by a 1� 6 joint matrix H(k)

that describes both the relation between joint torque and spatial force across

the joint, and between joint velocity and relative spatial velocity �V (k) across

the joint,

T

k

= H(k)f(k); (4)

�V (k) = H

�

(k)�

k

: (5)

(Abstractly speaking, H

�

(k) is a spatial tangent vector to the one-dimensional

manifold of joint motion.) From base to tip, equations (2) and (5) yield outward

transition equations for the link velocities and accelerations,

V (k) = �

�

(k � 1; k)V (k � 1) +H

�

(k)�

k

;

�(k) = �

�

(k � 1; k)�(k � 1) +H

�

(k)

_

�

k

+ a(k);

a(k) =

_

�

�

(k � 1; k)V (k � 1) +

_

H

�

(k)�

k

;

(6)

where a(k) is the Coriolis and centrifugal spatial acceleration of O

k

. Conversely,

adding (3) to the equations of motion for a single rigid body (see [26]), one gets

inward transition equations for the spatial forces,

f(k) = �(k; k + 1)f(k + 1) +M(k)�(k) + b(k);

b(k) =

_

M(k)V (k)�

_

�(p(k))M(k)V (k) + �(p(k))
(k);

(7)

where 
(k) is the gravitational spatial force at the center of mass of body k and

b(k) is the sum of gyroscopic and gravitational spatial forces at O

k

. Assuming

a �xed robot base and contact-free motion, we have V (0) = 0, �(0) = 0 and

f(N +1) = 0, and (6,7) together with (4) give a complete recursive formulation

of the Newton-Euler dynamics for the multibody chain.

8



In the sequel we are only interested in the relation of joint torques T

k

and

accelerations

_

�

k

, so we concentrate on the essential part of the Newton-Euler

recursion which is given here in algorithmic form.

for k = 1(1)N

�(0) = 0 �(k) = �

�

(k � 1; k)�(k � 1) +H

�

(k)

_

�

k

+ a(k)

for k = N(�1)1

f(N + 1) = 0 f(k) = �(k; k + 1)f(k + 1) +M(k)�(k) + b(k)

T

k

= H(k)f(k)

(8)

For the model extensions discussed below we need two other forms of these

equations. A global reformulation is obtained if we combine the joint quantities

to vectors �; �;

_

�; T 2 R

N

and V; �; f; a; b 2 R

6N

(called \stacked notation"

in [26]). Including the de�nitions of V; a; b, this yields

V = E

�

�

V +H

�

�; � = E

�

�

�+H

�

_

� + a;

a =

_

E

�

�

V +

_

H

�

�; f = E

�

f +M�+ b;

b =

_

MV �

_

E

�

(p)MV + E

�

(p)
; T = Hf;

where H := diagfH(k)g, M := diagfM(k)g, and E

�

(p) := diagf�(p(k))g. The

recursive structure of (8) is now contained in the global transformation operator

E

�

:=

0

B

B

B

B

B

B

@

0 �(1; 2)

0 �(2; 3)

.

.

.

.

.

.

0 �(N � 1; N)

0

1

C

C

C

C

C

C

A

:

Using the matrix � := (I �E

�

)

�1

, we arrive at the global spatial representation

of robot dynamics,

� = �

�

(H

�

_

� + a);

f = �(M� + b);

T = Hf:

(9)

Upon substitution of � into the f equation,

f = �M�

�

H

�

_

� + �M�

�

a+ �b;

the joint forces T are �nally obtained as

T =M

_

� +Q (10)

with

M = H�M�

�

H

�

=M

�

; Q = H�(M�

�

a+ b):

This is a condensed representation of the robot dynamics in R

N

, the state space

representation. It gives a direct description of the well-known linear relation

of joint torques T and joint accelerations

_

�, where the positive de�nite inertia

matrixM and generalized forces Q depend on the robot's dynamic state (�; �).
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2.3.3 Inverse dynamics

The problem of inverse dynamics is the calculation of joint torques T

k

for given

joint accelerations

_

�

k

(and given positions and velocities �

k

; �

k

). This can be

achieved either by the recursion (8) or through the state space equation (10).

In numerical computations we actually use the recursive formulation since it

is more e�cient. For the same reason we represent all physical quantities in link

coordinates (denoted by an index subscript) rather than inertial coordinates

(denoted by an index argument). This simpli�es the calculation of a

k

; b

k

; H

k

and makesM

k

constant; only the transformation operator �(k�1; k) is replaced

by a slightly more complicated form involving the relative link orientation,

�

k

:=

�

B

k

~

l

k

B

k

0 B

k

�

=

�

I

~

l

k

0 I

��

B

k

B

k

�

:

The recursive Newton-Euler equations (8) and consequently (9) and (10) remain

formally unchanged upon substituting these quantities.

For a thourough investigation of recursive dynamics algorithms and a de-

tailed discussion of e�ciency considerations we refer the reader to [26] and to

the book by Featherstone [20].

2.3.4 Forward dynamics

The problem of forward dynamics is the calculation of joint accelerations

_

�

k

for given joint torques T

k

(and given positions and velocities �

k

; �

k

). This task

occurs in the integration of the robot's equations of motion and thus in every

nonlinear iteration during optimization. It is more involved than inverse dynam-

ics, requiring the solution of (10) or any equivalent system of linear equations.

We choose a reordering of equations (8) that contains explicitly all the spatial

quantities involved in robot dynamics:

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0 H

1

M

1

0 �I �

2

0 0 H

2

.

.

.

�I

.

.

.

M

N�1

0 �

N

0 0 H

N

M

N

�I

H

�

1

�I

�

�

2

H

�

2

�I

.

.

.

�

�

N

H

�

N

�I

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

_

�

1

�

1

_

�

2

.

.

.

�

N�1

_

�

N

�

N

f

1

f

2

.

.

.

f

N

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

T

1

�b

1

T

2

.

.

.

�b

N�1

T

N

�b

N

�a

1

�a

2

.

.

.

�a

N

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

(11)

This form re
ects the full recursive structure as well as the symmetric inde�nite

structure caused by the dual behavior of accelerations and forces. Furthermore,
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Figure 2: Tree topology of KUKA IR 761 with rotors

it does not imply how the system is solved, and it leaves open whether the

robot is modeled in ODE form

_

� = f(�; �;T ) or in index 1 descriptor form with

algebraic variables f

k

and additional di�erential variables V

k

. Below we use

the ODE form, but for certain applications (such as cooperating robots with

kinematic loops, for instance) a DAE model may be preferable.

According to [20] the most e�cient algorithm to solve (11) for up to eight

bodies is the composite rigid body method [60] with complexity O(N

3

); for more

than eight bodies the O(N) articulated body method (cf. [56, 2, 19]) is faster.

However, the latter turns out to be a special case of our recursive multistage

KKT algorithm [50] which solves similarly structured systems representing the

Karush-Kuhn-Tucker (KKT) optimality conditions in the trajectory optimiza-

tion context, cf. section 4.2. For this purpose the solver MSKKT is at hand

anyway, so we apply it to (11) even though our robot has only six links.

2.4 Rotor inertia

Commercial industrial robots often have cycloidal or harmonic drives with typ-

ical gear ratios between 50 and 200. Hence, the motors may perform several

thousand rotations per minute which makes rotor inertia a signi�cant factor

in robot dynamics. In the following we consider the rotors as additional rigid

bodies joined with the links on which they are located. Slowly rotating parts of

the gear train (lying behind the drives) are treated as if �xed on their respective

links.

2.4.1 Extended multibody system

By j

k

we denote the index of the link on which motor k is located. In case of

the robot KUKA IR 761 all motors are placed on one of the �rst three links,

j

1

= j

2

= 1; j

3

= 2; j

4

= j

5

= j

6

= 3:

The resulting tree-structured system is depicted in Fig. 2.
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In the extended multibody system the rotor and rotor shaft of motor k are

counted as body and joint N + k, respectively. By � = (�

0

; �

1

) 2 R

2N

we

denote now the augmented variable vector consisting of joint variables �

0

2 R

N

(previously �) and new rotor variables �

1

2 R

N

. The remaining state space

vectors �;

_

�; T 2 R

2N

, global spatial vectors V; �; f; a; b 2 R

12N

and block-

diagonal matrices M 2 R

12N�12N

, H 2 R

2N�12N

are partitioned accordingly.

Finally we rede�ne matrices

E

�

:=

�

E

0

�

E

1

�

0 0

�

; � := (I � E

�

)

�1

=

�

�

0

�

0

E

1

�

I

�

;

where the link-to-link transformation operator E

0

�

(previously E

�

) contains the

chain structure, and the rotor-to-link operator E

1

�

represents the coupling of

rotors to their respective parent links. In case of the KUKA IR761, the latter

operator is

E

1

�

=

0

B

B

B

B

B

B

@

�(1; 7) �(1; 8) 0 0 0 0

0 �(2; 9) 0 0 0

0 �(3; 10) �(3; 11) �(3; 12)

0 0 0

0 0

0

1

C

C

C

C

C

C

A

:

With these quantities, the global spatial formulation (9) and the condensed state

space formulation (10) of the dynamic equations remain valid for the augmented

system.

For the further analysis we split the state space equation (10) into link and

rotor components,

�

T

0

T

1

�

=

�

M

0

M

1�

M

1

J

r

��

_

�

0

_

�

1

�

+

�

Q

0

Q

1

�

; (12)

where J

r

= H

1

M

1

H

1�

2 R

6�6

is the diagonal matrix of rotor inertias, and

M

0

; Q

0

are rather lengthy expressions. However, since the rotors are symmetric

with respect to their axes, the combined inertia M

�

of links and rotors and the

gravitational force 


�

at their combined center of mass p

�

are independent of

the rotor motion. This leads to simpli�cations in M

0

and Q

0

, yielding

M

0

= H

0

�

0

M

�

�

0�

H

0�

; Q

0

= Q

�

+H

0

�

0

E

1

�

(M

1

H

1�

)_�

1

;

M

1

= H

1

M

1

E

1�

�

�

0�

H

0�

; Q

1

= H

1

(M

1

E

1�

�

�

0�

a

0

+M

1

a

1

+ b

1

);

with

M

�

=M

0

+ E

1

�

M

1

E

1�

�

;

Q

�

= H

0

�

0

(M

�

�

0�

a

0

+ b

�

);

b

�

=

_

M

�

V

0

�

_

E

�

(p

�

)M

�

V

0

+ E

�

(p

�

)


�

:
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Equation (12) for the extended multibody system does not include the cou-

pling of rotors and joints through the gear trains; thus it provides a common

framework for di�erent types of connection. In the following we consider the

idealized case of a rigid coupling; elastic joints are discussed in section 2.5 below.

2.4.2 Inelastic joints

When elasticity in the gear trains can be neglected, the coupling between joint

and rotor coordinates �

0

; �

1

and between joint and rotor torques T

0

; T

1

is given

by

�

1

= N

�

�

0

; T

0

= N (�� T

1

) (13)

where � is the vector of electromagnetic torques and N is the gear ratio matrix.

The matrix N is often non-diagonal since the robot's hand axes usually interact

through a gear box in the wrist. In case of the robot KUKA IR 761 the gear ratio

matrix has the form

N =

0

B

B

B

B

B

B

@

n

1

n

2

n

3

n

4

n

4

5

n

4

6

n

5

n

5

6

n

6

1

C

C

C

C

C

C

A

: (14)

Using (13), all the torques T

0

; T

1

and rotor variables �

1

can be eliminated

from (12), yielding

N� = [M

0

+ (NM

1

+M

1�

N

�

) +NJ

r

N

�

]

_

�

0

+ (Q

0

+NQ

1

):

Thus, we have again a state space equation in the joint variables alone, but with

modi�ed inertia matrix and force vector, and with joint torques replaced by the

(scaled) electromagnetic rotor torques.

2.4.3 Approximation

In the typical case of large gear ratios n

k

� 1 and comparatively small rotor

inertias kM

1

k � kM

0

k, we can neglect the o�-diagonal inertia matrixM

1

and

gyroscopic and Coriolis forces of the relative rotor motion. Thus, we obtain the

simpli�ed robot model

N� = (M

0

+NJ

r

N

�

)

_

�

0

+Q

�

(15)

which is similar to (10) but includes the rotor inertia NJ

r

N

�

as seen by the

motors, and the spatial inertia of the rotors as parts of their respective host

links. The equivalent modi�cation of (9) is

�

0

= �

0�

(H

0�

_

�

0

+ a

0

);

f

0

= �

0

(M

�

�

0

+ b

�

);

N� = H

0

f

0

+NJ

r

N

�

_

�

0

:

13



The extra term NJ

r

N

�

does not pose any di�culties in the recursive cal-

culation of inverse dynamics. In forward dynamics the situation is again more

involved. Diagonal entries n

k

in N create a nonzero mass matrix entry n

2

k

J

rk

immediately precedingM

k

on the diagonal in (11), but o�-diagonal entries in N

create nonzero entries outside the diagonal blocks, thus destroying the recursive

structure. One can always eliminate the extra coupling by dummy variables,

and, fortunately, only three scalar variables are needed for typical industrial

robots having a gear ratio matrix like (14). This restores the structure, so we

can still apply a recursive algorithm in forward dynamics.

2.5 Joint elasticity

Since harmonic and cycloidal drives exhibit vibration, compliant behavior in the

gear trains should also be considered in the overall dynamic model of the robot.

2.5.1 Elasticity model

The coupled equations of motion for a robot with 
exible joints are given as

M

0

_

�

0

+M

1�

_

�

1

= �NT

c

(��)�Q

0

;

M

1

_

�

0

+ J

r

_

�

1

= �+ T

c

(��) �Q

1

;

(16)

where the vector of drive sti�ness torques T

c

depends on the torsion angles

�� := N

�

�

0

� �

1

. Using the approximate model of rotor inertia, (16) simpli�es

to

M

0

_

�

0

= �NT

c

(��)�Q

�

;

J

r

_

�

1

= �+ T

c

(��):

(17)

These equations or (16) have to be complemented by an elasticity model T

c

(��).

Linear models for 
exible robot joints are very well studied in the literature (for

references see [16], e.g.), but real harmonic and cycloidal drives exhibit nonlinear

compliant behavior caused by complex deformations of the gear teeth. Some

authors approximate experimental measurements of the sti�ness curve by a

cubic function

T

c;k

(��

k

) = K

1k

��

k

+K

2k

��

3

k

with constant coe�cients K

ik

[57, 23]. Alternatively, as in [15], approximations

by piece-wise linear funtions are typically given in the technical speci�cations

provided by drive manufacturers. We wish to use the technical data, but prefer

smooth functions to avoid unnecessary monitoring of discontinuities. Therefore

we �t a simple analytical function to the two or three linear segments (or to the

measured data if available). As an example, consider segment i of a piece-wise

linear model T

0

c

approximating the compliance function T

c;k

of drive k,

T

0

c;i

(��) = k

i

(�� � �

i

) + T

i

; T

1

= 0; �

1

= 0; i = 1; 2; 3: (18)

14



0

0.02

0.04

0.06

0.08

0 2 4 6 8 10

T

o

r

s

i

o

n

a

n

g

l

e

[

d

e

g

]

Drive input torque [Nm]

T

2

T

3

k

1

k

2

k

3

�

2

�

3

Figure 3: Torsion sti�ness of the harmonic drive HDUR-50

Here the slopes k

i

and segment-delimiting torques T

i

are experimental data,

and the angles �

i

are obtained as

�

2

= T

2

=k

1

; �

3

= �

2

+ (T

3

� T

2

)=k

2

:

Our smooth model function used in this example is given by

T

1

c

(��) = c

1

�� + sign(��)c

2

[(1 + c

3

j��j

p

)

1=p

� 1]; (19)

where p > n+ 1 yields a smoothness level T

1

c

2 C

n

(n 2 N), and

c

1

= k

1

; c

2

= k

3

�

3

� T

3

; c

3

= [(k

3

� k

1

)=c

2

]

p

:

For �� � �

2

or �� � �

3

the smooth function T

1

c

approaches the piece-wise

linear model asymptotically with jT

1

c

j � jT

0

c

j. The di�erence jT

1

c

�T

0

c

j decreases

(for all angles) if p is increased. Fig. 3 shows the piece-wise linear approximation

(solid line) and our smooth �t with a small parameter p = 3 (dotted line) for

one of the harmonic drives on the KUKA IR761. Obviously the two compliance

models are in good accordance. Note that a numerical integration with order n

requires p > n+1; otherwise jumps in higher derivatives will destroy the order.

2.5.2 Discussion

Optimal trajectories for robots with 
exible joints have been numerically in-

vestigated in [37] based on model (17). The results show that the minimum

time control problem has usually multiple local solutions, which are generally

slower than the corresponding optimal maneuver in the rigid joints case. Two

major classes of local solutions can be distinguished. One class is characterized

15



by frequently switching control torques, especially if the control discretization

is comparatively �ne. This behavior tends to damp oscillations. Maneuvers in

the second class are usually a bit slower; they have only a few control impulses

that tend to excite oscillations.

Neither behavior is acceptable in practice, and in addition, typical �rst mode

frequencies of 5{15Hz make the trajectories very sensitive to unavoidable model

inaccuracies. Besides, the di�erent time scales involved in oscillatory distur-

bances versus global joint motion introduce arti�cial sti�ness into the dynamic

equations, thus increasing the e�ort for numerical integration considerably.

For these reasons we do not include 
exibility in the robot model that is

used in the optimization runs below. Instead, we use the 
exible model to check

feasibility of the optimal trajectories obtained from the rigid model. Alterna-

tively, one might impose more restrictive smoothness conditions on the control

torques to reduce the high frequency content of optimal solutions for the 
exible

model, or one might penalize fast torque changes by adding appropriate terms

to the minimum time objective, thus creating a similar smoothing e�ect. How-

ever, it is not yet clear how joint 
exibility should be treated in robot trajectory

optimization, and additional investigations are being conducted.

2.6 Motor dynamics

Industrial robots are typically powered by electric actuators. In comparison to

hydraulic or pneumatic actuators, electric motors are compact, easy to control,

and do not require additional complex equipment. The adequate dynamic model

for an electric actuator is a linear �rst order system, see, e.g., [32, 33].

2.6.1 Model of servo motor

Dropping index k, the voltage balance and the relation between electromagnetic

torque � and current I in the armature circuit of servo motor k are given by

U = L

_

I +RI +��; (20)

� = �I; (21)

where L and R are the inductance and resistance of the armature winding, � is

its magnetic 
ux, U the voltage, � � �

N+k

the rotor speed, and � is a constant

factor. For the robot motors these equations have to be combined with (15) for

a rigid drive model or with (16) or (17) for an elastic model. In both cases the

voltage U replaces the torque � as control input.

If the electromagnetic response time �

e

= L=R of the servo motor is su�-

ciently small we can model the limit case L = 0 in (20). The order of the drive

model is then reduced and the expression for the electromagnetic torque has the

form

� = �I = �(U � ��)=R: (22)

If the voltage limit is large enough, then it does not restrict the permissible

rotor torques and velocities (see next section), and equation (22) enables us
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Figure 4: Torque and speed limits for an electric drive

to consider � as the control input again. In what follows we will assume that

L

k

= 0 for all motors of the robot KUKA IR761.

Note that the results in [35] indicate that motor dynamics should be consid-

ered as part of the robot's feedback controller anyway. Thus we can treat it in

a postprocessing rather than in the optimization problem, cf. section 6.

2.6.2 Torque and speed constraints

The rotor torque and velocity of an electric drive are limited by physical and

technical characteristics of the motor and the reduction gear. Some of the limits

ensure a certain lifetime of the drive under normal operation, others prevent the

motor and gear from destruction. Exceeding the latter ones can cause breaking

of gear teeth or shafts, for instance, or burnout of the armature winding. In [38]

the drive constraints are considered in detail, including the bias of certain limits

due to friction. Here we give an overview of the relevant limits, but friction is

treated separately in section 2.7 below.

The admissible angular velocities and rotor torques for a drive with servo

motor are shown in Fig. 4. Both the motor and the attached gear have a speed

limit j�j � �

max

; their minimum corresponds to the dotted vertical lines. For

the rotor torque there are actually three constraints. The smallest of them

restricts a certain \average" torque during a working cycle,

�

1

T

Z

T

0

j�(t)j

p

j�(t)j dt

.

�

av

�

1=p

� �

0

max

;
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where p � 3 is an empirical parameter depending on the gear construction, and

�

av

:=

1

T

Z

T

0

j�(t)j dt

is the average rotor speed. This limit is needed to ensure the speci�ed lifetime

of the gear. For the same reason the absolute torque in acceleration and deceler-

ation phases has a limit �

1

max

, the repeated peak torque limit, which in addition

restricts the current in the armature winding to prevent it from burning out.

The admissible area j�j � �

1

max

lies between the dotted horizontal lines in Fig. 4.

Finally, the solid horizontal lines represent limits �

2

max

that prevent breaking of

the gear. The breaking limit �

2

max

, the momentary peak torque limit, is typically

two to three times as large as �

1

max

; it may only be reached for a very short time,

as in emergency stops (or collisions), and only a few times during the gear's life.

The sloping lines correspond to box constraints on the motor voltage, which

according to (22) result in mixed speed and torque restrictions. In case of the

KUKA IR761 all drives are designed such that the voltage constraints do not

intersect the area enclosed by the dotted lines, so we use the limits j�j � �

max

and j�j � �

1

max

in the optimization below.

2.7 Friction

Cycloidal and harmonic drives with high gear ratios cause signi�cant reductions

of the e�ective joint torques due to friction. Experimental measurements indi-

cate that friction in these drives has three components: velocity-independent

friction, velocity-dependent friction, and friction from resonant vibration. If we

neglect the in
uence on the gear transmission from resonant friction [15], the

total drive friction torque T

f

according to the model in [1] is given by

T

f

(�; T ) =

(

sign(�)�(�) if � 6= 0;

sign(T )min(�

0

; jT j) if � = 0;

(23)

where � is the rotor velocity, T is the rotor torque, �(�) models the velocity

dependence of friction, and �

0

= �(0).

The complicated nature of friction introduces state-dependent discontinuities

in the dynamic equations, requiring proper numerical treatment by switching

functions [18, 58, 61]. Furthermore, dry friction may cause rank de�ciencies in

the optimization problem. Numerical investigations of optimal robot trajecto-

ries under the in
uence of friction have been performed in [22], where a Coulomb

friction model is used, that is, �(�) � �

0

in (23). More generally, the velocity

dependence of friction may be approximated by a cubic function [55]

�(�) = �

0

+ �

1

j�j+ �

3

j�j

3

:

However, the creation of a comprehensive model seems rather complicated. Fric-

tion coe�cients are very di�cult to measure. In addition, they depend on the

temperature, lubrication and wear-out of gears and hence change with time.
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Figure 5: Geometry of pneumatic weight compensation system on KUKA IR761

Therefore we cannot advocate the use of presently available physical friction

models in trajectory optimization. Instead, we employ an empirical model that

is typically used in practice. Each drive is assumed to have a certain e�ciency,

so that a reduction of the nominal joint torque by a constant percentage yields

the e�ective torque

T

k;e�

= (1� c

k

)T

k

:

The loss coe�cients c

k

in this equation can be regarded as safety margins for

the motor torques so that the feedback controller can compensate for friction. A

more precise model might take into account that friction actually increases the

e�ective torque during deceleration phases. Anyway, the sensitivity analysis in

section 5.4.3 shows that the optimal maneuver time in our application example

is only mildly a�ected by a reduction of torque limits.

2.8 Pneumatic weight compensation

Special robot constructions or certain tools may require dynamic modeling of

additional components that are not covered by the \generic" set described in

previous sections.

In case of the robot KUKA IR761/125/150.0 which is designed to handle

heavy loads up to 125kg, a passive pneumatic weight compensation system

on axis 2 (the shoulder axis) supports the upper arm motor when the arm is

inclined. This system is placed on the �rst link; it consists of two lever arms

with a piston (see Fig. 5) from which the pressure is transmitted by oil to a gas

bubble in a pressure container. Its additional torque T

p

depends only on the

joint angle �

2

; the functional dependence

T

p

(�

2

) = T

0

1

1� q[L(�

2

)� (�� 1)]

sin �

2

L(�

2

)

;
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Figure 6: Pneumatic extra torque on the second axis of KUKA IR 761

is plotted in Fig. 6. Here the �rst factor T

0

is a constant torque, the second

factor measures the change of pressure due to deviations from zero position,

and the third factor is purely geometric with L(�

2

) =

p

�

2

� 2� cos �

2

+ 1. The

remaining parameters are constant,

T

0

= Sp

0

(l

0

+ l

1

); q = Sl

0

=V

0

; � = (l

0

+ l

1

)=l

0

;

where S; p

0

; V

0

denote the e�ective area of the piston, the adjustable minimal

gas pressure, and the maximal gas volume, respectively.

3 Model calibration

Accurate o�-line programming and trajectory optimization methods for robots

require, of course, quantitatively correct dynamic robot models. Model calibra-

tion is the task of adapting a model so that simulation runs reproduce the real

system behavior with su�cient accuracy. This process involves decisions about

the structure of the model, i.e., how certain subsystems should be modeled, and,

given a speci�c model structure, the estimation of unknown (or inaccurate) pa-

rameters from measurements. In our case the structural decisions are concerned

with subsystem models for the multibody dynamics, elasticity, friction, etc. Pa-

rameters to be estimated include kinematic parameters such as link lengths and

joint locations, and dynamic parameters such as link masses, inertia tensors,

elastic compliances, friction coe�cients, etc.

Calibration is not our main subject in this paper; it is an important research

�eld of its own, so we will not go into too much detail here. However, we will give

some general information on the type of parameter estimation problems that
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arise in dynamic robot calibration, and indicate how the dynamic measurements

may be performed. For a collection of recent contributions to robot calibration

from both science and industry the reader is referred to [3].

3.1 Parameter estimation

For the parameter estimation we compare measurements ~y

ij

of a given robot

maneuver with the values y

i

(x(t

j

); p) obtained from model-based simulation.

Here t

j

are the sample times and y

i

are suitable functions of the joint variables

such as inertial coordinates of reference points on the robot, for instance. The

measurement errors �

ij

= y

i

(x(t

j

); p)� ~y

ij

are assumed to be independent and

normally distributed with mean value zero and standard deviation �

ij

. Now

a Maximum Likelihood estimation is obtained by minimizing the least-squares

cost function

k�(x(t

1

); : : : ; x(t

k

); p)k

2

2

:=

X

i;j

�

�2

ij

[y

i

(x(t

j

); p)� ~y

ij

]

2

subject to

_x

1

(t)� f

1

(x(t); p) = 0

f

2

(x(t); p) = 0

r(x(t

1

); : : : ; x(t

k

); p) = 0 or � 0:

To simplify notation we do not distinguish between measurement times and

times at which boundary conditions are evaluated. The latter include typically

(parameter-dependent) initial conditions, parameter restrictions, and terminal

conditions. If some measurements before and after the maneuver are performed

with much higher accuracy than the measurements obtained during robot mo-

tion, then the results of these measurements at rest should also be formulated

as boundary conditions rather than least-squares conditions.

Suitable algorithms are available for the numerical solution of the (often ill-

conditioned) parameter estimation problem [7, 8, 9, 41, 45]. The algorithms are

implemented as multiple shooting and collocation codes PARFIT and COLFIT;

an additional multiple shooting variant MULTEX takes advantage of the special

sparse structure of the Jacobian in the important case of multiple experiments.

3.2 Dynamic measurements

Obtaining dynamic data of high speed robot maneuvers is di�cult and costly.

In addition to speeds and angles of the motor axes (which are available through

internal sensors on the robot) one needs highly accurate measurements of spatial

link positions and orientations in very short sample intervals. An initial cali-

bration is needed for each individual robot when it is assembled. Furtermore,

(periodic) recalibrations are required due to material ageing or after repairs.

To prevent production losses, these recalibrations should be performed on the

shop 
oor, and in the ideal case even during the running production process.
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Therefore the measuring system must not directly interfere with the robot, and

it should be mobile, robust, easy to use, and inexpensive.

Theodolite triangulation methods are successfully used in kinematic robot

calibration systems (see Schr�oer [42]), and have already been applied in practice

by KUKA. While theodolite triangulation is extremely accurate, it is also very

expensive and too slow for dynamic measurements.

A promising new approach was developed by Hilsebecher and Schletz [25, 40]

who combine a system of at least two digital cameras with advanced techniques

for image sequence processing to determine the motion of special large area

reference patterns on the robot; these motion data are then used as input for

the parameter estimation. Experiments using a KUKA IR161/15 show that the

approach works in practice; it can be expected that it will meet all the criteria

listed above after further development.

To further cut down calibration costs, optimal experimental design tech-

niques as developed by Hilf [24], e.g., should be used to specify test trajectories

that give the necessary dynamic data with minimal measuring e�ort.

4 Trajectory optimization

For real life trajectory optimization problems one needs robust numerical algo-

rithms that can e�ciently handle large numbers of variables and restrictions. In

this section we describe a general approach for the discretization of trajectory

optimization problems and present two new sequential quadratic programming

(SQP) methods that handle the resulting sparse structure particularly well.

4.1 Direct BVP discretization

The direct boundary value problem approach to optimal control problem (1)

combines a piece-wise parameterization of the control function on a certain

grid with a piece-wise state representation via collocation or multiple shooting

on a second grid. To avoid technical ballast we assume that these grids are

identical, and restrict ourselves to an autonomous ODE control problem rather

than the DAE control problem of section 1. On the other hand, we emphasize

the presence of inequality restrictions in the trajectory optimization problem

(TOP) because of their practical signi�cance. Simple state and control bounds

are treated separately from general, usually nonlinear path constraints g:

�(x(T )) = min (24)

_x(t)� f(x(t); u(t)) = 0 (25)

g(x(t); u(t)) 2 [g

min

(t); g

max

(t)] (26)

x(t) 2 [x

min

(t); x

max

(t)] (27)

u(t) 2 [u

min

(t); u

max

(t)] (28)

r

1

(x(t

1

)) + � � �+ r

k

(x(t

k

)) = 0 (29)
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For the discretization of (24{29) we choose a grid �: 0 = �

1

< � � � < �

m

= T

with m � k nodes as a re�nement of the grid 0 = t

1

< � � � < t

k

= T on which

boundary and interior point conditions are speci�ed. We denote subintervals by

I

j

= (�

j

; �

j+1

) and the grid inclusion by � : t

i

= �

�(i)

.

Next, control functions are speci�ed piece-wise via free control parameters u

j

and �xed base functions v

j

with local support, u(t) = v

j

(t; u

j

) on I

j

. That is,

u is restricted to some �nite-dimensional space of admissible controls indepen-

dently on each subinterval. Control jumps are permitted at the nodes �

j

.

A state discretization by collocation uses polynomials p

j

of degree �

j

as

local representations of the trajectory x on I

j

. The polynomial p

j

(t; x

j

; z

j

) is

uniquely parameterized by the local initial value x

j

� p

j

(�

j

; x

j

; z

j

) and by its

time derivatives z

i

j

� _p

j

(�

i

j

; x

j

; z

j

) at collocation points �

i

j

= �

j

+ �

i

j

(�

j+1

� �

j

),

where 0 � �

1

j

< � � � < �

�

j

j

� 1. Each polynomial p

j

is required to satisfy the

di�erential equation at all collocation points, speci�ed by collocation conditions

c

i

j

(x

j

; z

j

; u

j

) := z

i

j

� f(p

j

(�

i

j

; x

j

; z

j

); v

j

(�

i

j

; u

j

)) = 0; i = 1(1)�

j

; (30)

while global continuity of the piece-wise trajectory representation is ensured

through connection conditions

h

j

(x

j

; z

j

; x

j+1

) := p

j

(�

j+1

; x

j

; z

j

)� x

j+1

= 0; j = 1(1)m� 1: (31)

In the case of multiple shooting there are no collocation variables and condi-

tions; the connection conditions appear in the same form as above, but z

j

is

replaced by u

j

in (31), and p

j

(t; x

j

; u

j

) is a numerical solution of the local ini-

tial value problem x

j

� p

j

(�

j

; x

j

; u

j

), _p

j

(t; x

j

; u

j

) = f(t; p

j

(t; x

j

; u

j

); v

j

(t; u

j

))

on I

j

, obtained by some suitable integration procedure.

To formulate the discrete control problem we de�ne vectors y

j

:= (x

j

; z

j

; u

j

),

y := (y

1

; : : : ; y

m

), and the objective function F

1

(y) := �(x

m

). Equality and

inequality constraints are collected as c

j

:= (c

1

j

; : : : ; c

�

j

j

) and

F

2

(y) :=

0

B

@

fc

j

(y

j

)g

m

j=1

fh

j

(y

j

; x

j+1

)g

m�1

j=1

r

1

(x

1

) + � � �+ r

m

(x

m

)

1

C

A

; F

3

(y) :=

�

fg

j

(y

j

)g

m

j=1

�

;

where path constraints g

j

(y

j

) := g(x

j

; v

j

(�

j

; u

j

)) are speci�ed at the nodes only,

and r

j

vanishes unless j = �(i) for some i � k. The discrete control problem

is now obtained as a large scale nonlinear optimization problem (NLP) in the

general form

F

1

(y) = min

y

subject to

8

>

<

>

:

F

2

(y) = 0

F

3

(y) 2 [r

l

; r

u

]

y 2 [b

l

; b

u

]

9

>

=

>

;

: (32)

Here lower and upper ranges r

l

; r

u

and bounds b

l

; b

u

represent the limits given

by path constraints (26{28); in case of unrestricted components the values �1

are formally used.
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4.2 Structure-exploiting SQP methods

To solve NLP (32) numerically we apply an SQP iteration, y

k+1

= y

k

+�

k

�y

k

,

�

k

2 (0; 1], where each search direction �y

k

is obtained as solution of a linear-

quadratic subproblem (QP):

1

2

�y

�

H

k

�y + J

k

1

�y = min

�y

subject to

8

>

<

>

:

J

k

2

�y + F

k

2

= 0

J

k

3

�y + F

k

3

2 [r

l

; r

u

]

�y + y

k

2 [b

l

; b

u

]

9

>

=

>

;

: (33)

Here F

k

i

:= F

i

(y

k

) and J

k

i

:= F

0

i

(y

k

) are current function and Jacobian values,

respectively, and H

k

approximates the Hessian of the Lagrangian.

From the de�nitions of F

1

; F

2

; F

3

it is apparent that the QP has a speci�c

structure which we call m-stage block-sparse [50]: The (exact) Hessian H

k

and

Jacobians J

k

2

; J

k

3

are block-diagonal, except for superdiagonal blocks �I and a

full row of blocks in J

k

2

. These o�-diagonal blocks are produced by the linearly

coupled connection conditions and boundary conditions h

j

and r

j

, respectively;

the remaining component functions �; c

j

; g

j

are all completely separated.

More speci�cally, one obtains block partitionings H

k

= diag(H

k

1

; : : : ; H

k

m

),

J

k

3

= diag(Q

k

1

; : : : ; Q

k

m

), and

J

k

2

=

0

B

B

B

B

B

@

G

k

1

P

G

k

2

P

.

.

.

.

.

.

G

k

m�1

P

R

k

1

: : : : : : : : : : : : : : : : R

k

m

1

C

C

C

C

C

A

:

As in y

j

= (x

j

; z

j

; u

j

), the individual blocks are further subdivided as

H

k

j

=

0

@

H

xx

j

H

xz

j

H

xu

j

H

zx

j

H

zz

j

H

zu

j

H

ux

j

H

uz

j

H

uu

j

1

A

= (H

k

j

)

�

; Q

k

j

=

�

Q

x

j

0 Q

u

j

�

;

and

G

k

j

=

�

C

x

j

C

z

j

C

u

j

G

x

j

G

z

j

G

u

j

�

; P =

�

0 0 0

�I 0 0

�

; R

k

j

=

�

R

x

j

0 0

�

:

All C

j

blocks and all derivatives with respect to z

j

are absent in the multiple

shooting case, whereas G

x

j

= I and G

u

j

= 0 in collocation.

Due to the bound and range constraints one cannot solve QP (33) directly.

Instead, either an active set strategy (ASS) or an interior point method (IPM)

perform a minor iteration treating the inequalities. Both alternatives lead to a

sequence of linear, symmetric inde�nite equation systems of the form

�

H

kl

(J

kl

2

)

�

J

kl

2

��

�y

kl

���

kl

�

=

�

J

kl

1

+ (J

kl

2

)

�

�

kl

F

kl

2

�

;
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each of which represents the Karush-Kuhn-Tucker (KKT) optimality conditions

for a purely equality-constrained QP. Moreover, the structure of H

k

; J

k

2

is

preserved in the modi�ed matrices H

kl

; J

kl

2

for both approaches, yielding m-

stage block-sparse KKT systems. (Details are given in [50].)

As we have seen, the QP (and KKT system) structure results from second-

order decoupling of all component functions of F

1

; F

2

; F

3

. While this decoupling

property is natural for boundary conditions of trajectory optimization problems

and for connection conditions in multiple shooting, it is an extra requirement

in collocation. Here the connection conditions are often combined with collo-

cation conditions in certain Hermite-Lobatto schemes, cf. [21, 4, 59]. Although

such a formulation reduces the number of NLP variables, the resulting non-

linear coupling across stages destroys the m-stage block-sparse QP structure

and, even worse, deteriorates the SQP convergence as compared to our separate

formulation (30, 31), cf. [45, Sec. 2.1.3].

Once given, the multistage structure can be exploited on several levels as

already described in [11]. First, it obviously permits independent computation

(even in parallel) and memory-e�cient storage of functions, gradients, and Hes-

sian blocks. Next, one can e�ciently approximate the Hessian by high-rank

block updates. We use rank-2 BFGS type updates on every block, yielding a

global rank-2m update. This leads to local one-step superlinear convergence of

the SQP method, with an asymptotic convergence rate that depends only mildly

on the grid size. Finally, specially tailored algorithms can make use of the block

structure in linear algebra calculations for QP and KKT systems solution.

In the following section we will describe an extremely e�cient algorithm that

was speci�cally developed for solving multistage optimization problems: the

recursive multistage SQP method. This approach combines all the techniques

of structure exploitation mentioned above. Its performance is demonstrated in

the numerical computations below. We also outline the partially reduced SQP

method which provides another e�cient approach to structure exploitation that

is suitable for trajectory optimization.

4.2.1 Recursive multistage SQP method

The recursive multistage SQP approach developed in [49, 50] is based on a

general decoupling strategy for the numerical treatment of di�cult nonlinear

problems. Our principal goal in setting up the discrete problem is a reduction

of nonlinear coupling rather than �nding a compact formulation with as few

variables as possible. Although the resulting discrete problem will usually be

much larger, it also receives a clearer structure that can be exploited in the

linearized system. Furthermore, the decoupling enlarges the domain of conver-

gence for the nonlinear iteration, thus making it more robust|and even more

e�cient except for easy problems.

On the TOP level the nonlinear decoupling is achieved through the direct

BVP approach as described above. A \compact" discretization might combine

the direct control parameterization with single shooting instead, or apply the

previously mentioned Hermite-Lobatto collocation scheme.
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On the NLP level we introduce slacks s = (s

l

; s

u

; t

l

; t

u

) to reformulate bound

and range inequalities y 2 [b

l

; b

u

], F

3

(y) 2 [r

l

; r

u

] as equality constraints and

simple nonnegativity constraints

^

F

3

(y)� s = 0; s � 0;

where

^

F

3

(y) =

0

B

B

@

F

3

(y)� r

l

r

u

� F

3

(y)

y � b

l

b

u

� y

1

C

C

A

:

Although this is a standard transformation in linear programming, the refor-

mulation has important consequences in our nonlinear context. The symmetric,

independent treatment of lower and upper bounds and ranges achieves a nonlin-

ear decoupling in accordance with our general strategy. Furthermore, it makes

the SQP method an infeasible point method: y

k

need not satisfy the bound and

range restrictions before the �nal iteration. Hence a suitable initial estimate y

0

is found more easily and, in particular, one can expect fast convergence from a

coarse grid solution even if it violates some inequality restrictions after a grid

re�nement. The e�ciency of the SQP method is further increased by the use of

an interior point QP solver. In contrast to active set strategies, the interior point

approach enables an adaptive accuracy control for the increments (�y

k

;�s

k

),

which saves considerable e�ort in early SQP iterations.

On the QP level we also introduce slack variables explicitly. Dropping the

iteration index k, this yields

^

J

3

�y +

^

F

3

� s = 0; s � 0

instead of the bound and range restrictions. (Since s appears linearly in the NLP,

we do not linearize with respect to the slacks, and the increment is obtained as

�s

k

= s� s

k

from the QP solution s.) The decoupling via slack variables has

the same positive e�ects as on the NLP level. In particular, e�cient QP solution

by a robust primal-dual infeasible interior point method is greatly enhanced by

a natural warm start strategy in the SQP context: the initial estimate for the

SQP increment is simply �y

0

= 0, and QP slacks and dual variables are started

with the respective NLP variables of the previous SQP iteration. Together with

a precise accuracy control via duality theory this leads to rapid convergence of

the interior point method as observed below.

On the KKT level, �nally, we employ a highly e�cient linear inde�nite solver

which is speci�cally tailored to the multistage block-sparse structure. Based on

the theory of Dynamic Programming, this algorithm generates a symmetric

factorization of the KKT matrix using a �xed block elimination scheme. In a

backward recursion, the factorization alternates local hierarchical projections

with minimizations over the remaining local degrees of freedom in each stage.

This yields a true projected Hessian method in the absence of coupled multipoint
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boundary conditions. Including additional backward and forward recursions for

the right hand side, the solver achieves optimal complexity O(m) on the m-

stage KKT system. Besides its e�ciency the algorithm o�ers two important

advantages compared to general sparse solvers. First, there is no need for an

(expensive) structure analysis, and the �ll-in is exactly known a priori. Second,

in case of a rank de�ciency in the KKT system, the defect is exactly located

and permits a control-theoretical interpretation on all higher levels. This allows

to detect modeling errors, for instance. The multistage KKT algorithm can

be used within both active set and interior point QP solvers, and due to its

linear complexity it is particularly suited for very �ne discretizations. Finally

we would like to recall from section 2.3.4 that our code MSKKT is also used to

solve the 6-stage KKT system (11) occurring in the forward dynamics problem

for the robot KUKA IR761, i.e., in each evaluation of the right hand side of the

robot ODE.

The whole method is implemented in the multistage trajectory optimization

package MSTOP consisting of four structure-speci�c modules and two generic

ones. The core module MSKKT supplies the multistage KKT solver and a set

of utility operations for the multistage structure. MSIPM and MSSQP on the

next two levels implement the nested nonlinear iterations based on generic inte-

rior point and SQP modules GENIPM and GENSQP, respectively, and MSTOP

�nally handles the direct BVP discretization including function and gradient

evaluation. The two top levels have recently been implemented, and �rst com-

putational results with the complete package are reported in section 5 below for

the press connection maneuver. Details of the KKT and IPM algorithms and

benchmark tests for MSKKT are described in [50], and computational results

for MSIPM can be found in [51].

4.2.2 Partially reduced SQP method

The partially reduced SQP approach developed by Schulz [45] is designed for

an e�cient treatment of problems where dependent and independent NLP vari-

ables can be distinguished, y = (y

d

; y

i

) 2 R

n

d

+n

i

. That is, a certain subset

c(y

d

; y

i

) of the equality constraints F

2

has a full rank partial derivative @c=@y

d

so that y

d

is implicitly or explicitly given as a nonlinear function of y

i

. (In

NLP (32), e.g., this is true for the collocation variables and conditions.) The

basic idea is to view the problem as depending on independent variables y

i

only,

but instead of computing y

d

in each SQP step by a full nonlinear iteration,

only one Newton step is performed. The approach may reduce the problem size

substantially; only a reduced Hessian and gradient of dimension n

i

are needed

in the QP subproblems. This makes the partially reduced SQP method fast

and storage-e�cient; it is particularly well-suited for very large control prob-

lems with a comparatively small number of control (and other independent)

variables, such as typical PDE control problems for instance. In contrast to

the older fully reduced approach which reduces the problem with respect to all

NLP constraints (including active inequalities!), the partially reduced approach

permits a convenient and robust treatment of inequalities.
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Figure 7: Front view of the press connection workcell (not to scale)

A partially reduced SQP method based on a collocation discretization is

available in the trajectory optimization code OCPRSQP [45]. This implementa-

tion selects initial states x

1

and all control variables u

j

as independent variables;

the remaining states and all collocation variables are implicitly eliminated via

connection and collocation conditions. The elimination leads to dense QP sub-

problems which are treated by the active set solver E04NAF from the commercial

NAG Fortran library. Alternatively, state variables and continuity conditions

could be left in the problem to preserve the m-stage block-sparse structure, and

MSIPM could be used as QP solver.

The code OCPRSQP has been applied successfully to various robot optimiza-

tion problems including trajectory optimization for satellite mounted robots

[45, 43, 44, 36, 37]; results for the press connection are reported in [12].

5 Computational results

5.1 A real life transport maneuver

In the following we will consider a typical time-critical transport maneuver as an

application example. At Mercedes-Benz, car body parts such as doors are made

on production lines consisting of about a dozen hydraulic presses. Raw metal

sheets are fed into the line and pressed at every station until they receive their

�nal shape. The transport of partially processed sheets between the presses is

accomplished by robots. Since the distance between presses is approximately

7 meters, each robot is equipped with an arm extension on which a pneumatic

gripper is mounted. We refer to the transport maneuver as press connection; its

cycle time depends on the type of object being transported and varies around
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Figure 8: Top view of the press connection workcell (not to scale)

6{7 seconds including the unloaded return trip. During several years great e�ort

has been spent on gradually increasing the throughput of these production lines,

but further improvements of productivity are still desired. Therefore Mercedes-

Benz has a great interest in mathematical optimization methods as a means to

reduce the cycle time of the press connection to a minimum.

5.2 Model of the transport maneuver

In this project we use the commercial CAD system ROBCAD which provides di-

rect user access to the internal database through its Application Programming

Interface. The CAD system and a ROBCAD model of the press connection

are supplied by our industry partners Tecnomatix GmbH and KUKA GmbH,

respectively. The model includes the geometry and kinematics of a workcell

containing two presses and the robot. Figures 7 and 8 show a vertical and a

horizontal cross section of the workcell, where the distance between presses is

scaled down in both cases. The ROBCAD model also includes a reference path

consisting of �ve segments (see Fig. 7): (1) raising the load in the left press,

(2) leaving the press, (3) transport to the right press, (4) entering the press,

(5) lowering the load. (Note that the third segment is actually divided into two

subsections.) The reference path is roughly speci�ed by a small number of loca-

tions (marked by stars), each de�ning a position and orientation for the gripper

or, more precisely, for the TCP frame. These locations are \interpolated" by a

programmable trajectory generator according to the settings of certain motion

parameters which in
uence the resulting shape and velocity pro�le of the tool

center point's trajectory. One possibility is a simple linear connection of the

reference locations as shown in the �gures.
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joint �

min

[deg] �

max

[deg] �

max

[deg/s] T

max

[Nm]

1 �160 160 95 12860

2 �55 75 95 12860

3 �105 55 95 9507

4 �305 305 150 3683

5 �120 120 126 4376

6 �350 350 214 1547

Table 2: Limits on joint angles, speeds and torques for KUKA IR 761

Actually there are two structurally di�erent basic maneuvers that move the

load from the left press to the right press (see Fig. 8). In the �rst case, joint 6

turns in the negative direction and the load passes under the arm of the robot

and close to its base. The reference trajectory is of this type, which we call an

inward move. In the second case, joint 6 turns in the positive direction and the

load travels far from the robot base. We call this an outward move. Optimal

solutions of both types must be computed to �nd the fastest maneuver by direct

comparison.

So far we consider in our optimization only the roughly horizontal press-to-

press motion consisting of segments 2{4; its duration in the ROBCAD simulation

is 2.06 seconds. On the vertical segments 1 and 5, which take about 0.55 seconds

each, collisions are very likely since the load leaves or approaches its mounting

inside one of the presses. Collision avoidance in these zones requires either

straight, almost vertical TCP movement as on the reference path, or precise

geometric data plus information on locally required safety margins; therefore

we defer optimization of the complete maneuver until later.

Collision avoidance on segments 2{4 is achieved as follows. We specify a

feasible region for the tool center point, and restrict the gripper orientation

inside the presses by tight joint angle limits on the hand axes. Furthermore,

when the load passes the robot during the outward move, a tighter joint angle

limit on one hand axis prevents a part of the arm extension from hitting the

robot arm. As shown by the �ne dotted lines in Fig. 8, the horizontal TCP limits

leave a curved area reaching from press to press around the robot (so that a

safety distance of at least 10 cm between load and robot base is maintained),

while the vertical limits shown in Fig. 7 leave narrow tunnels inside the presses

and an upwardly open feasible region outside.

In addition to these task-speci�c geometric restrictions, the standard box

constraints given in Table 2 have to be imposed on joint angles, velocities, and

torques. The robot model is the one presented in section 2; it includes the

multibody dynamics of the six links and the gripper with load, rotor inertias

as seen by the motors, the pneumatic weight compensation on the second axis,

and friction loss coe�cients supplied by KUKA. For the reasons discussed in

section 2.5.2 above, joint 
exibility is excluded from the model in optimization

calculations.
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grid solution optimal iterations CPU time [s] motion

size accuracy time SQP IPM total IPM type

20 10

�3

1.767 10 81 62.1 5.09 inward

32 10

�3

1.770 10 90 100.6 8.69 inward

40 10

�3

1.767 13 121 165.9 14.47 inward

20 10

�4

1.7656 17 140 106.2 8.57 inward

32 10

�4

1.7639 21 196 214.7 19.17 inward

40 10

�4

1.7634 24 227 307.7 27.74 inward

20 10

�3

1.768 11 102 68.9 6.37 outward

32 10

�3

1.769 12 115 120.3 11.09 outward

40 10

�3

1.768 14 155 179.4 18.70 outward

20 10

�4

1.7650 20 197 125.8 11.81 outward

32 10

�4

1.7630 31 299 311.6 28.77 outward

40 10

�4

1.7636 28 296 357.9 35.93 outward

Table 3: Optimization results for the press connection

5.3 Optimizing the transport maneuver

Numerical optimization runs are performed according to the recursive multistage

SQP approach using the multistage trajectory optimization package MSTOP.

For the press connection maneuver we parameterize the control by piecewise

constant functions on a uniform grid which is also used for the multiple shooting

discretization. One step of the classical order four Runge-Kutta method is

performed on each interval. Our control variables are the joint torques; the state

variables are joint angles, joint velocities, and the unknown maneuver time T

as a parameter. Both the inward move and the outward move are optimized

with termination accuracies ranging from 10

�3

to 10

�6

and on di�erent grids

consisting of 20, 32, and 40 intervals. The discretization yields optimization

problems with up to 853 variables, 624 equality constraints and 1598 inequality

constraints, leaving up to 229 degrees of freedom. A (discrete) initial trajectory

for the SQP iteration is generated by linear interpolation of initial and �nal

positions in joint space, with a constant rate of acceleration during the �rst half

of the maneuver and constant deceleration afterwards, resulting in a triangular

velocity pro�le. The maneuver time is determined such that the torque limits

are satis�ed, but joint speed limits and geometric constraints may be violated.

Numerical computations are performed on an Iris Indigo workstation with a

100MHz R4000/R4010 processor reaching about 10MFlops.

The optimization results for accuracies of three and four digits are listed in

Table 3. Here the SQP iteration count is actually the number of QP subproblems

solved: the termination criterion, measuring the expected objective decrease

plus a weighted sum of constraint violations, needs a search direction to decide

whether the current iterate is acceptable or not; hence at least one QP solution

is always required, and no step is performed in the �nal SQP \iteration".

31



-250
-200
-150
-100
-50

0
50

100
150
200
250

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Jo
in

t v
el

oc
ity

 [d
eg

/s
ec

]

Time [sec]

Joint 1
Joint 2
Joint 3
Joint 4
Joint 5
Joint 6

Figure 9: Optimal velocity pro�les for outward move

Obviously, the inward move and outward move can be performed with com-

parable speed, both taking slightly less than 1.77 seconds. Hence the engineer

may choose according to other criteria, such as sensitivity with respect to dis-

turbances, safety considerations, or stress on the robot joints. Compared to the

reference solution one gains 0.29 seconds in both cases, or 14% on the (opti-

mized) horizontal part of the maneuver and 9% in the complete maneuver.

We observe that for all di�erent grids and accuracies the values of the opti-

mal transport time are very close together: they di�er by at most 0.01 seconds.

This remains true if we include the higher accuracy results; optimal values for

the inward move range between 1.760 and 1.770 seconds, while values for the

outward move range only between 1.762 and 1.769 seconds. These data indicate

that near-optimal solutions can already be obtained on relatively coarse grids

with low accuracy. In view of the practical application, we consider a discretiza-

tion on about 20 intervals and an accuracy of two or three digits as appropriate

for CAD based motion planning of maneuvers like the press connection, espe-

cially so since the computation time for a collision-free minimum time trajectory

is rather low with only 1 to 1.5 minutes. If necessary, the �nal o�-line optimiza-

tion before down-loading the trajectory may still be performed on a �ner grid

and with higher accuracy, taking signi�cantly less than 10 minutes for all cases

considered above.

Table 3 also shows the good convergence behavior of our method on this

problem class. All instances are solved after a relatively small number of SQP

iterations: 10 to 14 iterations for three digits, and 17 to 31 iterations for four

digits. Furthermore, the average number of interior iterations per SQP iteration

is almost constant as a consequence of the warm start strategy. For �ner grids

and higher accuracies we observe a slight increase, but the average number varies

between 8.1 and 11.1 only.

Examination of relative computation times reveals that the time spent on

QP solution by the interior point method is never more than 10% of the total
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time. The remaining time less at most 0.3% is in all cases consumed by func-

tion and gradient generation for setting up the QP and during the line search,

i.e., in evaluating and di�erentiating the robot's forward dynamics equations.

The constant percentage of the two times results from the fact that SQP step

reductions are very rare, so the line search needs only one function evaluation

to accept the (full) step. The small percentage for the interior point method

demonstrates the e�ciency of the multistage SQP approach: about 90% of com-

putation time is actually spent to set up the problem, and only 10% is needed

for its solution. We expect that this high ratio can be reduced considerably if

the di�erentiation of forward dynamics is implemented more e�ciently, but this

will only cut down the total e�ort.

In the following we take a closer look at the optimal solutions on 32 intervals

with an accuracy of 10

�4

. Vertical and horizontal projections of the trajectories

for both the inward move and the outward move are included in Figs. 7 and 8;

Fig. 9 shows the time histories of optimal joint velocities for the outward move.

We observe that the tunnel constraints inside the presses are active in both

cases, the lower TCP limit between presses is reached during the outward move,

and the rear TCP limit near the robot base is touched during the inward move.

The front TCP limit does not restrict the motion in any case.

To conclude this section, we note that the shape of optimal trajectories varies

signi�cantly among di�erent optimization runs, even for the same maneuver type

and even if optimal times agree up to the prescribed tolerance. Althought all

solutions exhibit a \swinging" motion (which is a universal characteristic feature

of optimal PTP trajectories), their shape is almost undetermined between the

presses, especially in the vertical direction. Moreover, we note that for both

maneuver types and without any regularity the lower TCP limit is active in

some cases and inactive in others. Thus, the geometric constraints merely keep

the TCP inside the feasible region, but they do not reduce its freedom of motion

very much. This suggests that other restrictions may have a more signi�cant

in
uence in the optimization, and indeed we see in Fig. 9 that the joint speed

limits of Table 2 are active during large portions of the maneuver. Every limit

is reached at least once and remains active on a nondegenerate interval, except

for joint four. Similar observations apply to the inward move.

5.4 Sensitivity analysis

In the previous section we suspected that di�erent types of constraints do not

have the same in
uence on possible reductions of the maneuver time. To clarify

this, we perform a sensitivity analysis with respect to some of the restrictions,

namely the joint speed limit on the �rst axis, the geometric constraints, and the

maximal joint torques.

5.4.1 Joint speed limits

Velocity restrictions are apparently active during large portions of the maneuver.

In particular, the base joint 1 which has to travel by far the greatest distance in
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Figure 10: Optimal maneuver time vs. speed limit on �rst joint

the outward move, is at its speed limit for about 70% of the maneuver time. In

this period it rotates by 125 degrees (or 87%) of the total 144 degrees. These

observations suggest that the �rst joint speed might actually be the limiting

factor in the optimization.

Figure 10 shows the optimal maneuver times for the inward move and the

outward move if the �rst speed limit is varied between 90% and 125% of its

nominal value. These data con�rm our assumption. For both maneuver types,

the �nal time drops considerably if the �rst speed limit is increased. However,

in case of the inward move no improvement can be achieved if joint 1 is allowed

to rotate at more than 110% of its nominal speed. At this point the velocity

bound on joint 6 becomes the limiting factor in the optimization.

5.4.2 Geometric constraints

For the geometric restrictions we compare only two cases: the constrained ma-

neuver described above, and the completely unconstrained maneuver. The un-

constrained optimal times are 1.7591 seconds (vs. 1.7639) for the inward move,

and 1.7559 seconds (vs. 1.7630) for the outward move. In other words, collision

avoidance increases the optimal maneuver times by only 0.3% and 0.4%! This

drastically demonstrates the ambivalent role of geometric constraints: although

they are essential in practice and di�cult to handle in the optimization, their

in
uence on the �nal time can be practically negligible|as in the case of this

press connection maneuver.

5.4.3 Maximal motor torques

Finally we investigate the in
uence of joint torque limits on the maneuver time.

All the limits are multiplied by a common factor in the range from 0.9 to 1.25;

the resulting maneuver times are shown in Fig. 11. We see that the in
uence

is not negligible but far smaller than the in
uence of the �rst joint speed limit.

Even if the maximal torques are all increased to 125% of their nominal values,
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the optimal maneuver times drop only to 1.7132 seconds (or 97.1%) for the

inward move, and to 1.7143 seconds (or 97.2%) for the outward move. Hence,

reducing the torque limits does not much degrade performance. This justi�es

the introduction of safety margins to compensate for friction and possibly other

disturbances that cannot be included in the model with su�cient accuracy.

6 Practical considerations

In view of a practical implementation of optimal trajectories in current robot

hardware, we note that the results above are idealized in several ways, even if

a detailed, calibrated robot model is used. Some of the issues that must be

addressed are:

1) The need for feedback: It is necessary that there be feedback control op-

erating that can correct for o� nominal situations, for example to account for

inaccuracies in the dynamic robot model. Ideally, the feedback would be optimal

with respect to any disturbed state, at least in a linearized sense as developed

in [10, 34]. Practically, one must make use of the feedback controllers in the

robot hardware, since anything else would require substantial hardware modi-

�cations, and severely limit the applications of the approach. Of course, it is

important to use reduced torque limits in the optimization, as we did by intro-

ducing friction loss coe�cients. Then there is a margin for use of the feedback

controller to make corrective action without exceeding the torque limits.

2) Vibrations: As already discussed in section 2.5, vibrations from joint


exibility can not yet be handled satisfactorily, and further research is being

conducted on various possible approaches.

3) Wearout and lifetime: Time optimal control is aggressive, asking at least

some actuators to work as hard as they can. Some of the restrictions discussed

in section 2.6.2 protect the motors and gears against premature wearout, but

in certain situations it may be important to include additional constraints, or

choose a di�erent cost function, to ensure a desired lifetime of other components.
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4) Getting the feedback controller to produce the optimal torque input: The

time optimal control problem as stated above develops an optimal torque his-

tory u(t), but the hardware only allows to give position commands �

c

(t) to the

feedback controllers for each joint. In [35] this issue is addressed in detail; here

we give a brief summary of the results. If we simply give the optimal trajectory

as the command, then a typical controller will always be behind in executing

the trajectory, and hence, take longer to complete the maneuver. The problem

is that the control law of the feedback controller uses its own logic to decide how

much torque to apply, and in such controllers that are essentially proportional

control with rate feedback, one does not get a large torque unless there is a large

error. In addition, the rate feedback can retard sudden large changes in output.

Hence, we must be smarter, and �nd a way to make the feedback controller

generate the torque history we want. This requires that we back calculate the

command that one would have to give the controller in order that it produce

the desired torque output. It is natural in this context to include the motor

dynamics in the model of the feedback controller, since the motor's back elec-

tromagnetic force acts as a feedback loop. Now, back calculation involves the

inversion of a certain transfer function G(s) associated with the controller, and

the numbers n and m of the poles and zeros of G(s) and the smoothness level of

the torque history u(t) determine whether this is possible or not. Assuming that

we require a continuous command, �

c

2 C

0

, the main result of [35] tells us that

we must have u 2 C

n�m

. If we ask only for a piece-wise continuous command

with possible jumps at the grid points, �

c

2 C

�1

, we must have u 2 C

n�m�1

.

These conditions can always be satis�ed by choosing an appropriate class of ad-

missible control functions for the trajectory optimization. For instance, in the

typical cases n �m � 1 2 f0; 1g one may use continuous functions with piece-

wise constant slopes, or piece-wise quadratic functions with matching values and

slopes at the grid points. If the time constants of all servo motors are negligible,

then the necessary smoothness level is reduced by one and we may even be able

to back calculate the command from the piece-wise constant parameterization

of the optimal torque that was chosen above.

7 Conclusions

We have discussed the issue of dynamic robot modeling in the optimization

context, and presented the speci�c components of a modular, generic model for

the commercial robot KUKA IR 761. Using the nominal technical robot data,

the model is su�ciently accurate and detailed to conduct realistic studies of

o�-line motion planning and trajectory optimization. For actual application in

the production process, of course, a dynamic calibration will be required, and

additional modeling work may become necessary.

We have further described recent numerical algorithms for the robust and

e�cient treatment of large optimization problems with many inequality con-

straints. Computational results for the new multistage trajectory optimization

packageMSTOP document that it performs excellently in state and control con-
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strained point-to-point robot trajectory optimization. Fast optimization codes

are thus available; it remains to make them accessible in the engineer's working

environment and simplify their application by integrating the numerical software

in a CAD system. To be speci�c, CAD based tools for the formulation of geo-

metric constraints have to be developed, so that subroutines for the evaluation

of task-speci�c restrictions and their derivatives can be generated automatically.

Finally, we have demonstrated in our example problem that collision-free

high speed trajectories can be computed automatically. Although the time

savings of nine percent may not appear very large, they represent a signi�cant

improvement by industrial standards. One must keep in mind that the press

connection is a time critical maneuver that runs already very e�ciently, so even

a �ve percent reduction in time and hence cost would be considered a substantial

gain in the production process.
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