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ABSTRACT. An incomplete argument in the proof of Theorem 3.4 from [2] is corrected.

We noticed a gap in the proof of [2, Theorem 3.4] and the aim of this erratum is to provide a complete
argument. Specifically, in [2, Theorem 3.4], we derive the Euler-Lagrange equation satisfied by a minimizer
u of the functional

Em(u) :=
β

2
‖∂2
xu‖2L2(I) +

1

2

(
τ +

a

2
‖∂xu‖2L2(I)

)
‖∂xu‖2L2(I)

on the set
Aρ := {u ∈ H2

D(I) : u is even with − 1 < u ≤ 0 and Ee(u) = ρ} ,
where I := (−1, 1), ρ ∈ (2,∞), H2

D(I) := {u ∈ H2(I) : u(±1) = ∂xu(±1) = 0}, and Ee is a non-
negative nonlinear and nonlocal functional of u. The computation in [2] of the Euler-Lagrange equation,
see [2, Equation (3.10)], relies implicitly on the property that minimizers lie in the interior ofAρ, a property
which is, however, not known a priori. Although knowing that minimizers are strictly greater than −1, it is
actually not known whether minimizers are negative. This issue can be remedied by changing slightly the
admissible set Aρ on which the functional Em is minimized. In fact, the non-positivity assumption in Aρ is
not needed and our analysis works equally well in the set

Aρ := {u ∈ H2
D(I) : u is even with − 1 < u and Ee(u) = ρ} . (1)

To be more precise, several results in [2] were derived for non-positive functions in

Ks := {u ∈ Hs
D(I) : −1 < u ≤ 0 on I} , s ≥ 1 ,

an assumption which is not required, as it suffices to work in

Ss := {u ∈ Hs
D(I) : −1 < u on I} , s ≥ 1 .

For u ∈ S1, one shall then rather define the function bu in [2, Equation (2.1)] as

bu(x, z) :=


1 + z

1 + u(x)
for (x, z) ∈ Ω(u) ,

1 for (x, z) ∈ Ω(Mu) \ Ω(u) ,

where Ω(Mu) := I × (−1,Mu + 1) with Mu := max{0, supI u}. Note that bu belongs to H1(Ω(Mu)) ∩
C(Ω(Mu)), which allows one to redefine Bu ∈ H−1(Ω(Mu)) (i.e. the dual space of H1

D(Ω(Mu))) in [2,
Equation (2.2)] by

〈Bu, ϑ〉 := −
∫

Ω(Mu)

[
ε2∂xbu∂xϑ+ ∂zbu∂zϑ

]
d(x, z) , ϑ ∈ H1

D(Ω(Mu)) .

Then [2, Lemma 2.1, Lemma 2.2] remain true for u ∈ S1 (instead of u ∈ K1) and [2, Proposition 2.3] is
actually valid for u ∈ S2−α (instead of u ∈ K2−α) when replacing [2, Equation (2.5)] by

1 + z

1 +Mu
≤ ψu(x, z) ≤ 1 , (x, z) ∈ Ω(u) .
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Moreover, [2, Proposition 2.6, Proposition 2.7] are also true when replacing K1 by S1. For later use, we
note that [2, Proposition 2.6] implies

Ee(u) ≤ Ee(0) = 2 for u ∈ S1 with u ≥ 0 in I . (2)

Also [2, Proposition 2.8] remains true for u ∈ S1 (instead of u ∈ K1), except that the lower bound on Ee(u)
has to be replaced by

Ee(u) ≥
∫ 1

−1

dx

1 + u(x)
≥ 2

1 +Mu
.

All other statements of [2, Section 2] are not affected by these changes.
The minimization of Em in [2, Section 3] is now performed on the set Aρ defined in (1) for a given

ρ ∈ (2,∞). The statement of [2, Proposition 3.1] has to be weakened as follows, the proof being the same:

Proposition 3.1. The function µ is bounded on (2,∞) with

lim
ρ→2

µ(ρ) = 0 and µ∞ := sup
ρ∈(2,∞)

µ(ρ) <∞ .

Next, neither [2, Proposition 3.2] nor [2, Lemma 3.3] are affected by the change ofAρ to Aρ. Therefore,
in the proof of [2, Theorem 3.4] we can use the same arguments to derive that, if u ∈ Aρ is an arbitrary
minimizer of Em on Aρ, then u ∈ H4(D) ∩H2

D(I), and there is a Lagrange multiplier λu ∈ R such that

β∂4
xu−

(
τ + a‖∂xu‖2L2(I)

)
∂2
xu = −λug(u) , x ∈ I , (3)

where g(u) := ∂uEe(u) is a non-negative functional of u, which belongs to L2(I). At this stage, since
the non-positivity of u is not yet guaranteed, we need to employ a slightly different argument than in [2].
Indeed, we first assume for contradiction that λu ≤ 0. Then −λug(u) is non-negative and it follows from
(3) and [1, Theorem 1.1] that u > 0 in I . Hence ρ = Ee(u) ≤ Ee(0) = 2 by (2), contradicting ρ ∈ (2,∞).
Consequently, λu > 0 and −λug(u) is negative, so that we infer from (3) and [1, Theorem 1.1] that u < 0
in I . The remaining arguments in the proof of [2, Theorem 3.4] are then the same.

Summarizing, the statement of [2, Theorem 3.4] is correct, once Aρ is replaced by Aρ. Thanks to the
above analysis, [2, Theorem 3.4] may be supplemented with the following result:

Corollary. Consider ρ ∈ (2,∞) and let u ∈ Aρ be an arbitrary minimizer of Em in Aρ. Then u < 0 in I
and u ∈ Aρ. In addition,

Em(u) = min
v∈Aρ

Em(v) = min
v∈Aρ

Em(v) ,

and the statement of [2, Proposition 3.1] is true.
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