ERRATUM TO: A VARIATIONAL APPROACH TO A STATIONARY FREE BOUNDARY PROBLEM MODELING MEMS

PHILIPPE LAURENÇOT AND CHRISTOPH WALKER

AbStract. An incomplete argument in the proof of Theorem 3.4 from [2] is corrected.

We noticed a gap in the proof of [2, Theorem 3.4] and the aim of this erratum is to provide a complete argument. Specifically, in [2, Theorem 3.4], we derive the Euler-Lagrange equation satisfied by a minimizer u of the functional

$$
\mathcal{E}_{m}(u):=\frac{\beta}{2}\left\|\partial_{x}^{2} u\right\|_{L_{2}(I)}^{2}+\frac{1}{2}\left(\tau+\frac{a}{2}\left\|\partial_{x} u\right\|_{L_{2}(I)}^{2}\right)\left\|\partial_{x} u\right\|_{L_{2}(I)}^{2}
$$

on the set

$$
\mathcal{A}_{\rho}:=\left\{u \in H_{D}^{2}(I): u \text { is even with }-1<u \leq 0 \text { and } \mathcal{E}_{e}(u)=\rho\right\}
$$

where $I:=(-1,1), \rho \in(2, \infty), H_{D}^{2}(I):=\left\{u \in H^{2}(I): u(\pm 1)=\partial_{x} u(\pm 1)=0\right\}$, and \mathcal{E}_{e} is a nonnegative nonlinear and nonlocal functional of u. The computation in [2] of the Euler-Lagrange equation, see [2, Equation (3.10)], relies implicitly on the property that minimizers lie in the interior of \mathcal{A}_{ρ}, a property which is, however, not known a priori. Although knowing that minimizers are strictly greater than -1 , it is actually not known whether minimizers are negative. This issue can be remedied by changing slightly the admissible set \mathcal{A}_{ρ} on which the functional \mathcal{E}_{m} is minimized. In fact, the non-positivity assumption in \mathcal{A}_{ρ} is not needed and our analysis works equally well in the set

$$
\begin{equation*}
\mathscr{A}_{\rho}:=\left\{u \in H_{D}^{2}(I): u \text { is even with }-1<u \text { and } \mathcal{E}_{e}(u)=\rho\right\} . \tag{1}
\end{equation*}
$$

To be more precise, several results in [2] were derived for non-positive functions in

$$
\mathcal{K}^{s}:=\left\{u \in H_{D}^{s}(I):-1<u \leq 0 \text { on } I\right\}, \quad s \geq 1
$$

an assumption which is not required, as it suffices to work in

$$
S^{s}:=\left\{u \in H_{D}^{s}(I):-1<u \text { on } I\right\}, \quad s \geq 1
$$

For $u \in S^{1}$, one shall then rather define the function b_{u} in [2, Equation (2.1)] as

$$
b_{u}(x, z):=\left\{\begin{array}{cll}
\frac{1+z}{1+u(x)} & \text { for } & (x, z) \in \overline{\Omega(u)} \\
1 & \text { for } & (x, z) \in \overline{\Omega\left(M_{u}\right)} \backslash \overline{\Omega(u)}
\end{array}\right.
$$

where $\Omega\left(M_{u}\right):=I \times\left(-1, M_{u}+1\right)$ with $M_{u}:=\max \left\{0, \sup _{I} u\right\}$. Note that b_{u} belongs to $H^{1}\left(\Omega\left(M_{u}\right)\right) \cap$ $C\left(\Omega\left(M_{u}\right)\right)$, which allows one to redefine $B_{u} \in H^{-1}\left(\Omega\left(M_{u}\right)\right)$ (i.e. the dual space of $\left.H_{D}^{1}\left(\Omega\left(M_{u}\right)\right)\right)$ in [2, Equation (2.2)] by

$$
\left\langle B_{u}, \vartheta\right\rangle:=-\int_{\Omega\left(M_{u}\right)}\left[\varepsilon^{2} \partial_{x} b_{u} \partial_{x} \vartheta+\partial_{z} b_{u} \partial_{z} \vartheta\right] \mathrm{d}(x, z), \quad \vartheta \in H_{D}^{1}\left(\Omega\left(M_{u}\right)\right)
$$

Then [2, Lemma 2.1, Lemma 2.2] remain true for $u \in S^{1}$ (instead of $u \in \mathcal{K}^{1}$) and [2, Proposition 2.3] is actually valid for $u \in S^{2-\alpha}$ (instead of $u \in \mathcal{K}^{2-\alpha}$) when replacing [2, Equation (2.5)] by

$$
\frac{1+z}{1+M_{u}} \leq \psi_{u}(x, z) \leq 1, \quad(x, z) \in \Omega(u)
$$

Date: August 12, 2019.

Moreover, [2, Proposition 2.6, Proposition 2.7] are also true when replacing \mathcal{K}^{1} by S^{1}. For later use, we note that [2, Proposition 2.6] implies

$$
\begin{equation*}
\mathcal{E}_{e}(u) \leq \mathcal{E}_{e}(0)=2 \quad \text { for } \quad u \in S^{1} \quad \text { with } \quad u \geq 0 \text { in } I \tag{2}
\end{equation*}
$$

Also [2, Proposition 2.8] remains true for $u \in S^{1}$ (instead of $u \in \mathcal{K}^{1}$), except that the lower bound on $\mathcal{E}_{e}(u)$ has to be replaced by

$$
\mathcal{E}_{e}(u) \geq \int_{-1}^{1} \frac{\mathrm{~d} x}{1+u(x)} \geq \frac{2}{1+M_{u}}
$$

All other statements of [2, Section 2] are not affected by these changes.
The minimization of \mathcal{E}_{m} in [2, Section 3] is now performed on the set \mathscr{A}_{ρ} defined in (1) for a given $\rho \in(2, \infty)$. The statement of [2, Proposition 3.1] has to be weakened as follows, the proof being the same:
Proposition 3.1. The function μ is bounded on $(2, \infty)$ with

$$
\lim _{\rho \rightarrow 2} \mu(\rho)=0 \quad \text { and } \quad \mu_{\infty}:=\sup _{\rho \in(2, \infty)} \mu(\rho)<\infty
$$

Next, neither [2, Proposition 3.2] nor [2, Lemma 3.3] are affected by the change of \mathcal{A}_{ρ} to \mathscr{A}_{ρ}. Therefore, in the proof of [2, Theorem 3.4] we can use the same arguments to derive that, if $u \in \mathscr{A}_{\rho}$ is an arbitrary minimizer of \mathcal{E}_{m} on \mathscr{A}_{ρ}, then $u \in H^{4}(D) \cap H_{D}^{2}(I)$, and there is a Lagrange multiplier $\lambda_{u} \in \mathbb{R}$ such that

$$
\begin{equation*}
\beta \partial_{x}^{4} u-\left(\tau+a\left\|\partial_{x} u\right\|_{L_{2}(I)}^{2}\right) \partial_{x}^{2} u=-\lambda_{u} g(u), \quad x \in I \tag{3}
\end{equation*}
$$

where $g(u):=\partial_{u} \mathcal{E}_{e}(u)$ is a non-negative functional of u, which belongs to $L_{2}(I)$. At this stage, since the non-positivity of u is not yet guaranteed, we need to employ a slightly different argument than in [2]. Indeed, we first assume for contradiction that $\lambda_{u} \leq 0$. Then $-\lambda_{u} g(u)$ is non-negative and it follows from (3) and [1, Theorem 1.1] that $u>0$ in I. Hence $\rho=\mathcal{E}_{e}(u) \leq \mathcal{E}_{e}(0)=2$ by (2), contradicting $\rho \in(2, \infty)$. Consequently, $\lambda_{u}>0$ and $-\lambda_{u} g(u)$ is negative, so that we infer from (3) and [1, Theorem 1.1] that $u<0$ in I. The remaining arguments in the proof of [2, Theorem 3.4] are then the same.

Summarizing, the statement of [2, Theorem 3.4] is correct, once \mathcal{A}_{ρ} is replaced by \mathscr{A}_{ρ}. Thanks to the above analysis, [2, Theorem 3.4] may be supplemented with the following result:

Corollary. Consider $\rho \in(2, \infty)$ and let $u \in \mathscr{A}_{\rho}$ be an arbitrary minimizer of \mathcal{E}_{m} in \mathscr{A}_{ρ}. Then $u<0$ in I and $u \in \mathcal{A}_{\rho}$. In addition,

$$
\mathcal{E}_{m}(u)=\min _{v \in \mathscr{A}_{\rho}} \mathcal{E}_{m}(v)=\min _{v \in \mathcal{A}_{\rho}} \mathcal{E}_{m}(v),
$$

and the statement of [2, Proposition 3.1] is true.

REFERENCES

[1] Ph. Laurençot, Ch. Walker. Sign-preserving property for some fourth-order elliptic operators in one dimension or in radial symmetry, J. Anal. Math. 127 (2015), 69-89.
[2] Ph. Laurençot, Ch. Walker. A variational approach to a stationary free boundary problem modeling MEMS, ESAIM Control Optim. Calc. Var. 22 (2016), 417-438.

Institut de Mathématiques de Toulouse, UMR 5219, Université de Toulouse, CNRS, F-31062 Toulouse Cedex 9, France

Email address: laurenco@math.univ-toulouse.fr
Leibniz Universität Hannover, Institut für Angewandte Mathematik, Welfengarten 1, D-30167 Hannover, Germany

Email address: walker@ifam.uni-hannover.de

