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Abstract. This paper is concerned with a quasilinear parabolic equation including a nonlinear
nonlocal initial condition. The problem arises as equilibrium equation in population dynamics with
nonlinear diffusion. We make use of global bifurcation theory to prove existence of an unbounded
continuum of positive solutions.

1. Introduction

Age-structured models have a long history (see [24] and the references therein), both for the
case without and with spatial movement of individuals. To give a prototypical example for the
evolution of an age-structured population with quasilinear diffusion, let u = u(t, a, x) denote the
distribution density of individuals at time t ≥ 0, spatial position x ∈ Ω ⊂ Rn, and age a ∈ J :=
[0, am), where am ∈ (0, ∞] denotes the maximal age. Suppose that individuals move within the
space domain Ω and that dispersal speed d > 0 depends on the local overall population; that
is, suppose that movement of individuals is described by a density-dependent diffusion term
−divx

(
d(U, a, x)∇xu

)
, where

U(t, x) :=
∫ am

0
u(t, a, x)da (1.1)

is the overall population at spatial position x at time t. Assume further that individuals cannot
leave the space region Ω so that the behavior on the boundary ∂Ω is given by a Neumann
condition ∂νu = 0, with ν denoting the outward unit normal to ∂Ω. Let µ = µ(U, a, x) and
β(U, a, x) denote the death and birth modulus, respectively. Then the evolution of the population
is governed by the equations

∂tu + ∂au− divx
(
d(U, a, x)∇xu

)
+ µ(U, a, x)u = 0 , t > 0 , a ∈ (0, am) , x ∈ Ω , (1.2)

u(t, 0, x) =
∫ am

0
β(U, a, x) u(t, a, x)da , t > 0 , x ∈ Ω , (1.3)

∂νu(t, a, x) = 0 , t > 0 , a ∈ (0, am) , x ∈ ∂Ω , (1.4)

subject to an initial condition at t = 0. Treatment of well-posedness issues for equations of the
form (1.1)-(1.4) can be found e.g. in [24, 20]. Understanding the asymptotic behavior of the
evolution of structured populations demands precise information about equilibrium (i.e. time-
independent) solutions. The aim of this paper is to provide an abstract approach to establish
equilibrium solutions, which then applies to rather general nonlinear equations modeling age-
structured populations with quasilinear diffusion and so is not restricted to the particular exam-
ple above. We thus may want to put (1.1)-(1.4) in a more abstract framework. Given a (sufficiently
smooth) function u, set U :=

∫ am
0 u(a, ·)da and introduce a linear operator A(u, a) : E1 → E0 by

A(u, a)v := −divx
(
d(U, a, ·)∇xu

)
, v ∈ E1 := {v ∈W2

p(Ω) ; ∂νv = 0 on ∂Ω} ,
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where E0 := Lp(Ω) with p ∈ [1, ∞). In this setting, equilibrium solutions u : J → E1 to (1.1)-(1.4)
satisfy

∂au + A(u, a) u + µ(u, a) u = 0 , t > 0 , a ∈ J \ {0} , (1.5)

u(0) =
∫ am

0
β(u, a) u(a)da , t > 0 , (1.6)

where death rate µ and birth rate β depend in some way on u (e.g., on U). Clearly, u ≡ 0 is
a solution to (1.5)-(1.6) which therefore has to be singled out in the further analysis. Moreover,
since u represents a density, solutions should be nonnegative, that is, should belong to the
positive cone E+

0 at any age a.
For non-diffusive age-structured populations (i.e. A ≡ 0 in (1.5)), positive equilibria were estab-
lished e.g. by means of fixed point theorems in conical shells [12, 23]. These results were carried
over to the diffusive case as well [19]. However, the fact that u ≡ 0 is a solution to (1.5), (1.6)
allows one also to interpret the problem of finding positive solutions as a bifurcation problem
[7] and so to obtain more insight into the structure of the equilibria set. For this we write the
birth modulus in the form β(u, a) = λb(u, a) and introduce in this way a bifurcation parameter
λ > 0 which determines the intensity of the individual’s fertility while the qualitative structure
of the fertility is modeled by the function b. Writing A(u) := A(u, ·) + µ(u, ·) and

λ`(v)u :=
∫ am

0
λb(v, a)u(a)da ,

we are concerned in this paper with finding values λ > 0 and positive nontrivial solutions
u : J → E+

0 ∩ E1 to the nonlinear problem

∂au + A(u) u = 0 , a ∈ J \ {0} , (1.7)

u(0) = λ `(u)u . (1.8)

The results derived herein extend our previous results [18, 19] on local and global bifurcation.
In [18] it was shown that if A(u) depends sufficiently smooth on u and if the operator A(0)
possesses maximal Lp-regularity (for a precise definition see the next section), then a local curve
of positive solutions to (1.7), (1.8) bifurcates from the trivial branch (λ, u) = (λ, 0), λ ∈ R. This
local branch was subsequently extended in [19] to a global continuum by applying Rabinowitz’
global alternative [13], but for less general diffusion operators. More precisely, the existence of
an unbounded continuum of nontrivial positive solutions (λ, u) to (1.7), (1.8) was derived under
the assumption that the operator A(u) admits a suitable decomposition A(u) = A0 + A∗(u)
with A∗ being of “lower order”. Although the operator A(u) may still depend nonlinearly on u,
a quasilinear dependence, however, is not covered by the bifurcation result of [19]. In particular,
the result of [19] does not apply to the operator from example (1.2).
The aim of this paper is to remedy this deficiency by establishing a global continuum of posi-
tive solutions to (1.7)-(1.8) for truly quasilinear diffusion operators A(u). After recalling (and
refining) in Section 2 the results of [18] on local bifurcation, we shall show in Section 3 global bi-
furcation from the trivial branch provided some convexity condition (see (3.2) for details) holds
implying maximal Lp-regularity of A(u) for each u. The proof relies on a recent result of Shi
& Wang [16] which is based on the results of Pejsachowicz & Rabier [11] and is in the spirit
of the unilateral global bifurcation techniques of Rabinowitz [13] or rather their interpretation
by López-Gómez [10]. As we shall see then in Section 4, the convexity condition (3.2) is not
necessary provided A and ` in (1.7), (1.8) depend real analytically on u. Indeed, in this case, the
analytic bifurcation theory due to Buffoni & Toland [5] yields a global smooth curve of positive
solutions to (1.7), (1.8). Finally, in Section 5 we revisit problem (1.1)-(1.4) and demonstrate how
the results of Section 4 may be applied in this concrete situation. Further examples to which the
results of the present paper apply can be found in [18, 19, 21].
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2. Preliminaries

2.1. General assumptions. If E and F are Banach spaces we write L(E, F) for the set of linear
bounded operators from E to F, and we put L(E) := L(E, E). The subset thereof consisting
of compact operators is denoted by K(E, F) and K(E), respectively. Isom(E, F) stands for the
set of topological isomorphisms E→ F. By E ↪−↪→ F we mean that E is compactly embedded in F.

Throughout the paper we assume that E0 is a real Banach space ordered by a closed convex cone
E+

0 , and E1 is an embedded Banach space such that

the embedding E1 ↪→ E0 is dense and compact . (2.1)

We fix p ∈ (1, ∞) and set Eς := (E0, E1)ς,p with (·, ·)ς,p being the real interpolation functor
for ς := ς(p) := 1− 1/p. For each θ ∈ (0, 1) \ {1− 1/p} we let (·, ·)θ denote an admissible
interpolation functor, that is, an interpolation functor (·, ·)θ such that the embedding

E1 ↪→ Eθ := (E0, E1)θ

is dense. Note that the embedding Eθ ↪−↪→ Eϑ is compact for 0 ≤ ϑ < θ ≤ 1 (see [3, I.Thm.2.11.1]).
The interpolation spaces Eθ , 0 ≤ θ ≤ 1 are given their natural order induced by the cone
E+

θ := Eθ ∩ E+
0 . We suppose that

int(E+
ς ) 6= ∅ , (2.2)

i.e. E+
ς has a non-empty interior. Recall that am ∈ (0, ∞] and set J := [0, am). Observe that

am = ∞ is explicitly allowed. We introduce the spaces

E0 := Lp(J, E0) , E1 := Lp(J, E1) ∩W1
p(J, E0)

and recall the embedding
E1 ↪→ BUC(J, Eς) , (2.3)

where BUC stands for the bounded and uniformly continuous functions. Thus, the trace

γ0u := u(0) , u ∈ E1 ,

yields a well-defined operator γ0 ∈ L(E1, Eς). We let E+
1 := L+

p (J, E1) ∩W1
p(J, E0) denote the

positive cone of E1 and put Ė+
1 := E+

1 \ {0}. We fix a Banach space F such that

E1 ↪−↪→ F ↪→ E0 (2.4)

and let Σ denote an open connected zero-neighborhood in F. Then Σ1 := Σ ∩ E1 is an open
connected zero-neighborhood in E1. Suppose that for some ϑ ∈ (ς, 1] we have1

A ∈ C1(Σ,L(E1, E0)
)

, ` ∈ C1(Σ,L(E1, Eϑ)
)

(2.5)

and that for each u ∈ Σ1, the operator A(u) possesses maximal Lp-regularity, that is,(
∂a + A(u), γ0

)
∈ Isom(E1, E0 × Eς

)
, u ∈ Σ1 . (2.6)

Then (
u 7→ T[u] :=

(
∂a + A(u), γ0

)−1) ∈ C(Σ1,L(E0 × Eς, E1)) (2.7)

due to continuity of the inversion map B 7→ B−1 for linear operators. We suppose that

T[u](0, ·) ∈ L+(Eς, E1) , u ∈ Σ1 , (2.8)

that is, T[u](0, ·) maps the positive cone E+
ς into the positive cone E+

1 . Set

Q(u) := `(u)T[u](0, ·) , u ∈ Σ1 ,

1Observe that this notation includes that A = A(u, a) in (1.5) depends in a local way on age a.
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and note that by (2.5) and Eϑ ↪−↪→ Eς we have

Q ∈ C
(
Σ1,L(Eς, Eϑ)

)
∩ C

(
Σ1,K(Eς)

)
. (2.9)

We further suppose that

λ−1
0 > 0 is a simple eigenvalue of Q(0) with eigenvector Φ0 ∈ int(E+

ς ),

and there is no other eigenvalue of Q(0) with an eigenvector in E+
ς .

(2.10)

For our global bifurcation results stated in Section 3 and Section 4 we shall strengthen some of
the conditions later on. We point out that the assumptions above are met in many applications, in
particular in the situation of (1.1)-(1.4) (we shall be more specific in Section 5). For instance, (2.6)
is satisfied for quite general elliptic second order differential operators (see e.g. [9, Thm.8.2])
and (2.8) is the maximum principle for parabolic equations [8]. Regarding assumptions (2.4)
and (2.10) we note:

Remarks 2.1. (a) Let am < ∞. If α ∈ [0, 1) and s ∈ [0, 1− α), then E1 ↪−↪→Ws
p(J, Eα) ↪→ E0.

Proof. This follows from a generalized Aubin-Dubinskii lemma [4, Thm.1.1]. �

(b) If Q(0) ∈ K(Eς) is strongly positive, i.e. if Q(0)Φ ∈ int(E+
ς ) for each Φ ∈ E+

ς \ {0}, then (2.10)
holds with λ−1

0 equals the spectral radius of Q(0).

Proof. This is a consequence of the Krein-Rutman theorem [8, Thm.12.4]. �

The assumptions imposed above imply that (λ, u) ∈ R× Σ1 solves (1.7), (1.8) if and only if

u = T[u]
(
0, u(0)

)
, u(0) = λQ(u)u(0) , (2.11)

which follows by plugging the solution of (1.7) – given by the first identity of (2.11) – into (1.8).
Equivalently, setting S := T[0] we see that (λ, u) ∈ R× Σ1 solves (1.7), (1.8) if and only if

u = S
(
(A(0)−A(u))u , λ`(u)u

)
.

We shall use both characterizations of solutions in the sequel. Note that (2.11) implies that u(0)
(if nonzero) is an eigenvector of Q(u) with eigenvalue λ−1.

2.2. Local Bifurcation. By what we have just observed, solving (1.7), (1.8) is equivalent to finding
the zeros (λ, u) of the function F : R× Σ1 → E1 defined as

F(λ, u) := u− S
(
(A(0)−A(u))u , λ`(u)u

)
, (λ, u) ∈ R× Σ1 .

Let
S := {(λ, u) ∈ R× Σ1 ; F(λ, u) = 0} .

Clearly, (λ, u) = (λ, 0) for λ ∈ R gives a trivial branch in S of solutions to (1.7), (1.8). We shall
next show that a nontrivial branch of positive solutions bifurcates from this branch at the point
(λ, u) = (λ0, 0). For this we first show that the Fréchet derivative Fu(λ, u) of F with respect to u,
given by

Fu(λ, u)[φ] = φ− S
(
(A(0)−A(u))φ , λ`(u)φ

)
− S

(
−Au(u)[φ]u , λ`u(u)[φ]u

)
, φ ∈ E1 ,

(2.12)
is an index zero Fredholm operator. This will follow from the following observation:

Proposition 2.2. Let (λ, u) ∈ R× Σ1 be fixed and set

Fφ := F (λ, u)φ := φ− S
(
(A(0)−A(u))φ , λ`(u)φ

)
, φ ∈ E1 .

Then F ∈ L(E1) is a Fredholm operator of index zero. More precisely,

ker
(
F
)
=
{

T[u](0, w) ; w ∈ ker
(
1− λQ(u)

)}
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and
rg
(
F
)
=
{

h ∈ E1 ; h(0) + λ`(u)T[u]
(
∂ah + A(0)h, 0

)
∈ rg

(
1− λQ(u)

)}
(2.13)

with
dim

(
ker(F )

)
= codim

(
rg(F )

)
= dim

(
ker(1− λQ(u))

)
< ∞ .

Proof. The idea of the proof is the same as in [18, Lem.2.1] and it is rather the functional analytic
setting that has to be modified slightly. For the reader’s ease we include a complete proof here:
By definition of S = T[0], the equation Fφ = h for φ, h ∈ E1 is equivalent to

∂aφ + A(u)φ = ∂ah + A(0)h , (2.14)

φ(0)− λ`(u)φ = h(0) . (2.15)

From (2.14) it follows
φ = T[u]

(
∂ah + A(0)h, 0

)
+ T[u]

(
0, φ(0)

)
(2.16)

and, when plugged into (2.15), we obtain

(1− λQ(u))φ(0) = h(0) + λ`(u)T[u]
(
∂ah + A(0)h, 0

)
. (2.17)

The statement of the proposition is trivial if λ = 0, so let λ 6= 0. If 1/λ belongs to the resolvent
set of Q(u) ∈ K(Eς), then (2.16), (2.17) entail a trivial kernel ker(F ) = {0}. Moreover, in this
case, for an arbitrary h ∈ E1, there is a unique φ(0) ∈ Eς solving (2.17) as its right hand side
belongs to Eς. Consequently, the corresponding φ ∈ E1, given by (2.16), is the unique solution
to Fφ = h. This gives the assertion in this case.
Otherwise, if 1/λ is an eigenvalue of Q(u) ∈ K(Eς), then (2.16), (2.17) yield the characteriza-
tion of ker(F ) and rg(F ) as claimed. In particular, since T[u] is an isomorphism, we deduce
dim(ker(F )) = dim(ker(1− λQ(u))) which is a finite number because 1/λ is an eigenvalue of
the compact operator Q(u). Moreover, rg(F ) is closed in E1 since M := rg(1− λQ(u)) is closed
by the compactness of λQ(u) and due to (2.3), (2.5), and (2.7). Next, to compute codim(rg(F ))
note that

codim(M) = dim(ker(1− λQ(u))) < ∞ ,
hence M is complemented in Eς which yields a direct sum decomposition Eς = M⊕N. Denoting
by PM ∈ L(Eς) a projection onto M along N, we set

Ph := S
(
∂ah + A(0)h , PMh(0)− (1− PM)λ`(u)T[u]

(
∂ah + A(0)h, 0

))
, h ∈ E1 , (2.18)

and obtain P ∈ L(E1) from (2.3), (2.5), and (2.7). Since(
∂a + A(0)

)
(Ph) = ∂ah + A(0)h , γ0(Ph) = PMh(0)− (1− PM)λ`(u)T[u]

(
∂ah + A(0)h, 0

)
,

the characterization (2.13) actually implies that P maps E1 into rg(F ). Furthermore, if h ∈ rg(F ),
then (2.13) also ensures

Ph = S(∂ah + A(0)h, h(0)) = h ,
so P(rg(F )) = rg(F ). Thus P2 = P with rg(P) = rg(F ) is a projection and

E1 = ker(P)⊕ rg(F ) . (2.19)

Since S is an isomorphism, we obtain

ker(P) = {h ∈ E1 ; ∂ah + A(0)h = 0 , h(0) ∈ N} , (2.20)

from which we deduce dim(ker(P)) = dim(N) and the statement follows. �

For future purposes let us explicitly state the following decomposition of E1.

Remark 2.3. The direct sum decomposition

E1 = span
(
S(0, Φ0)

)
⊕ rg

(
Fu(λ0, 0)

)
holds.
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Proof. Taking (λ, u) = (λ0, 0) in Proposition 2.2 and noticing that F (λ0, 0) = Fu(λ0, 0), the
assertion follows from (2.19) and (2.20) with N = ker(1− λ0Q(0)) = R ·Φ0 . �

Corollary 2.4. For each (λ, u) ∈ R × Σ1, the Fréchet derivative Fu(λ, u) ∈ L(E1) is a Fredholm
operator of index zero.

Proof. Set
K(u)φ := S

(
−Au(u)[φ]u , λ`u(u)[φ]u

)
, φ ∈ E1 .

Then, by (2.4) and (2.5), K(u) coincides with the Fréchet derivative

K(u) = DwS
(
−A(w)u , λ`(w)u

)∣∣
w=u ∈ L(F, E1) ⊂ K(E1) .

Consequently, Proposition 2.2 and (2.12) show that Fu(λ, u) is a compact perturbation of a Fred-
holm operator of index zero, so Fu(λ, u) itself is a Fredholm operator of index zero. �

Next, we verify that we may apply the Crandall-Rabinowitz theorem on local bifurcation for the
map F.

Corollary 2.5. The kernel of Fu(λ0, 0) is one-dimensional, i.e. ker(Fu(λ0, 0)) = R · S(0, Φ0), and the
transversality condition Fλ,u(λ0, 0)

[
1, S(0, Φ0)

]
6∈ rg(Fu(λ0, 0)) is satisfied.

Proof. It readily follows from (2.10), (2.12), and Proposition 2.2 that ker(Fu(λ0, 0)) = R · S(0, Φ0).
Moreover, (2.10) and (2.12) imply Fλ,u(λ0, 0)

[
1, S(0, Φ0)

]
= −(0, λ−1

0 Φ0). Suppose that

−(0, λ−1
0 Φ0) ∈ rg(Fu(λ0, 0)) .

Then λ−1
0 Φ0 ∈ rg(1− λ0Q(0)) due to Proposition 2.2 contradicting the fact that

rg(1− λ0Q(0)) ∩ ker(1− λ0Q(0)) = {0}

since λ−1
0 is a simple eigenvalue of Q(0) according to (2.10). �

Based on the foregoing observations we are in a position to apply the celebrated Crandall-
Rabinowitz theorem [6] on local bifurcation and obtain a branch in S of positive solutions to
(1.7), (1.8). The following result has been observed in [18].

Theorem 2.6. Assume (2.1), (2.2), (2.4), (2.6), (2.8), and (2.10). Then there are ε > 0 and a continuous
function (λ̄, ū) : (−ε, ε)→ R× Σ1 such that the curves

K± := {(λ̄(t), ū(t)) ; 0 ≤ ±t < ε} ⊂ S

bifurcate from the trivial branch {(λ, 0) ; λ ∈ R} at (λ̄(0), ū(0)) = (λ0, 0) and

ū(t) = tS(0, Φ0) + o(t) as t→ 0 . (2.21)

Near the bifurcation point (λ0, 0), all nontrivial zeros of F lie on the curve K− ∪ K+. Moreover,

K+ \ {(λ0, 0)} ⊂ (0, ∞)× Ė+
1

and K− ∩ (0, ∞)× Ė+
1 = ∅.

Proof. According to Corollary 2.4, Corollary 2.5, and [6] we only have to prove the statements on
positivity. From (2.21) and (2.10) it follows that

t−1γ0ū(t) = Φ0 + γ0
o(t)

t
∈ int(E+

ς ) as t→ 0 ,

whence γ0ū(t) ∈ E+
ς provided t ∈ (0, ε) is sufficiently small. Since

ū(t) = T[ū(t)]
(
0, γ0ū(t)

)
,
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we conclude ū(t) ∈ Ė+
1 from (2.8) and λ̄(t) > 0 from the assumption λ0 > 0 for t ∈ (0, ε).

Consequently, K+ \ {(λ0, 0)} ⊂ (0, ∞)× Ė+
1 . The same argument shows that K− ∩ (0, ∞)× Ė+

1
is empty. �

Note that if A and ` in (2.6) are real analytic, then so is the curve (λ̄, ū) : (−ε, ε)→ R× Σ1 since
F : R× Σ1 → E1 is real analytic in this case.
The direction of bifurcation may be determined from the second relation (2.11). For instance, if
Q(u) ∈ K(Eς) is strongly positive for u ∈ Σ1, then (2.11) implies λr(Q(u)) = 1 for any positive
solution (λ, u) ∈ R× Σ1 of (1.7), (1.8) according to the Krein-Rutman theorem. Conditions may
then be imposed which ensure r(Q(u)) ≤ 1 so that bifurcation is necessarily supercritical. For
further details we refer to [18].

We next prove a compactness property of the solution set S that we shall use in the coming
subsections.

Lemma 2.7. Any bounded and closed subset of S is compact in R×E1.

Proof. Let (λn, un)n∈N be any sequence in a closed subset of S such that ‖(λn, un)‖R×E1 ≤ c0
for all n ∈N and some c0 ∈ R. Then

un = T[un]
(
0, un(0)

)
, un(0) = λnQ(un)un(0) . (2.22)

Due to (2.4), we may assume without loss of generality that (λn, un) → (λ, u) in R× Σ. Ac-
cording to (2.5) and (2.9) this implies T[un]

(
0, ·
)
→ T[u]

(
0, ·
)

in L(Eς, E1) and Q(un) → Q(u)
in L(Eς, Eϑ). Also note that (2.3) entails ‖un(0)‖Eς ≤ c for n ∈ N. Consequently, from (2.22) we
derive

‖un(0)‖Eϑ
≤ |λn| ‖Q(un)‖L(Eς ,Eϑ)

‖un(0)‖Eς ≤ c , n ∈N , (2.23)

and we thus may assume without loss of generality that un(0) → v in Eς since Eϑ ↪−↪→ Eς.
Now (2.22) shows that v = λQ(u)v and un = T[un]

(
0, un(0)

)
→ T[u]

(
0, v
)

in E1. Clearly,
u = T[u]

(
0, v
)

since un → u in F and we conclude that (λn, un)→ (λ, u) in R×E1. This proves
the assertion. �

3. Global Continua

We shall show that the local curve K+ provided by Theorem 2.6 is contained in a global con-
tinuum of positive solutions to (1.7), (1.8). In this section we make use of the unilateral global
bifurcation theory in the spirit of Rabinowitz’s alternative [13, 10] as proposed in [16]. In Sec-
tion 4 we shall give a slightly different approach by means of analytic bifurcation theory [5].
In order to apply the results of [16] we have to strengthen certain conditions. More precisely, in
the following we suppose in addition to the assumptions stated in Section 2 that

E′0 and E1 are separable (3.1)

and we strengthen assumption (2.6) to a convexity condition(
∂a + [(1− α)A(0) + αA(u)], γ0

)
∈ Isom(E1, E0 × Eς

)
, u ∈ Σ1 , α ∈ [0, 1] . (3.2)

We also assume that
`(0) ∈ L+(E1, Eς) (3.3)

and
Q(0) ∈ K(Eς) is strongly positive . (3.4)

According to Remark 2.1 this last assumption implies (2.10) with λ−1
0 given by the spectral ra-

dius of Q(0). Note that E0 is separable since E1 is separable and dense in E0. Also note that if
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E0 is reflexive (and separable), then E′0 is separable.

Assumption (3.1) implies the following lemma, which is needed in order to apply the result
of [16, §4].

Lemma 3.1. E1 can be equipped with an equivalent norm which is differentiable at any point different
from 0.

Proof. Due to [15], as E1 is separable since E1 is, the statement that E1 can be equipped with
an equivalent norm which is differentiable at any point different from 0 is equivalent to saying
that the dual space E′1 is separable. But since E′0 is separable, the space E′0 = Lp′(J, E′0) (with
1 = 1/p + 1/p′) is also separable and, moreover, densely injected in E′1 since E1 is densely
injected in E0. Whence E′1 is separable. �

The convexity condition (3.2) yields:

Lemma 3.2. For (λ, u) ∈ R× Σ1 and α ∈ [0, 1], the operator

(1− α)Fu(λ, 0) + αFu(λ, u) ∈ L(E1)

is Fredholm of index zero.

Proof. Let (λ, u) ∈ R× Σ1 and α ∈ [0, 1]. Noticing that

(1− α)Fu(λ, 0)[φ] + αFu(λ, u)[φ] = φ− S
(
α(A(0)−A(u))φ , λ[(1− α)`(0) + α`(u)]φ

)
− αS

(
−Au(u)[φ]u , λ`u(u)[φ]u

)
for φ ∈ E1, the proof is the same as in Proposition 2.2 and Corollary 2.4 by taking (3.2) into
account. �

Now we can prove that there is a global continuum of positive solutions to (1.7), (1.8).

Theorem 3.3. Assume (2.1), (2.2), (2.4), (2.5), (2.8), and (3.1)–(3.4). Then there is a connected compo-
nent C+ of S̄ containing the branch K+ such that C+ \ {(λ0, 0)} ⊂ (0, ∞)× Ė+

1 . Moreover, one of the
alternatives

(i) C+ is unbounded in R×E1, or
(ii) C+ intersects with the boundary R× ∂Σ1

occurs. In particular, if Σ = F, then C+ is unbounded in R×E1.

Proof. Due to Lemma 3.1 and Lemma 3.2, we may apply [16, Thm.4.4] and deduce that K+ is
contained in a connected component C+ of S̄ and one of the alternatives

(a) C+ is not compact in R× Σ1, or
(b) C+ contains a point (λ∗, 0) with λ∗ 6= λ0, or
(c) C+ contains a point (λ, z) with z 6= 0 and z ∈ rg

(
Fu(λ0, 0)

)
occurs, where we have used in (c) the decomposition E1 = span

(
S(0, Φ0)

)
⊕ rg

(
Fu(λ0, 0)

)
stated

in Remark 2.3. Notice that, owing to Lemma 2.7 (see [16, Rem.4.2]), alternative (a) is equivalent
to saying that

(i) C+ is unbounded in R×E1, or
(ii) C+ intersects with the boundary R× ∂Σ1.

According to Theorem 2.6, the component C+ near the bifurcation point (λ0, 0) coincides with K+.
Next, we show that C+ \ {(λ0, 0)} ⊂ (0, ∞) × Ė+

1 . Indeed, if C+ leaves (0, ∞) × Ė+
1 at some

point (λ, u) ∈ C+ ∩ R × E1 with (λ, u) /∈ (0, ∞) × Ė+
1 , there is a sequence ((λj, uj))j∈N in

C+ ∩ (0, ∞)× Ė+
1 such that (λj, uj) → (λ, u) in R×E1. Clearly, λ ≥ 0 and u ∈ E+

1 with λ = 0
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or u ≡ 0. But since (λ, u) ∈ S, we readily deduce from (2.11) that λ = 0 implies u ≡ 0. Hence
u ≡ 0 in any case, i.e. (λj, uj)→ (λ, 0) in R×E1. Again by (2.11), we have

uj = T[uj]
(
0, uj(0)

)
, uj(0) = λjQ(uj)uj(0) . (3.5)

Since vj := uj/‖uj‖E1 defines a bounded sequence in E1, by (2.4) we may extract a subsequence
of (vj) (which we do not index) which converges to some v in F. From (2.7) and (2.9) we deduce
T[uj]→ T[0] = S in L(E0 × Eς, E1) and Q(uj)→ Q(0) in L(Eς, Eϑ). As in (2.23) we then obtain
from (2.9) and (2.3) that

‖uj(0)‖Eϑ
≤ c‖uj(0)‖Eς ≤ c‖uj‖E1 ,

from which we conclude that the sequence (vj(0)) is bounded in Eϑ ↪−↪→ Eς. So, extracting a
further subsequence (which we again do not index) we see that vj(0)→ w in E+

ς . Letting j→ ∞
in (3.5) yields

v = S
(
0, w

)
, w = λQ(0)w ,

from which we first deduce that λ > 0 since otherwise w = 0 implying the contradiction v ≡ 0.
Consequently, w ∈ E+

ς is an eigenvector of Q(0) to the eigenvalue 1/λ. Thus λ = λ0 and
w = αΦ0 for some α > 0 according to (2.10), hence (λ, u) = (λ0, 0). Therefore, C+ leaves the
set (0, ∞)× Ė+

1 only at (λ0, 0). Thus C+ \ {(λ0, 0)} is contained in (0, ∞)× Ė+
1 . In particular,

alternative (b) above does not occur. We finally show that alternative (c) does not occur as well.
Suppose to the contrary that C+ contains a point (λ, z) with z 6= 0 and z = Fu(λ0, 0)ζ for some
ζ ∈ E1. Then z ∈ Ė+

1 and ζ − z = S(0, λ0`(0)ζ). Recall from Corollary 2.5 that φ∗ := S(0, Φ0)
with Φ0 from (2.10) satisfies φ∗ = S(0, λ0`(0)φ∗). Since Φ0 ∈ int(E+

ς ), we find κ > 0 such
that κΦ0 + ζ(0)− z(0) belongs to E+

ς . Set ψ := κφ∗ + ζ − z. Due to ψ = λ0S(0, `(0)(ψ + z)) we
conclude ∂aψ + A(0)ψ = 0 on the one hand from which ψ = S(0, ψ(0)), and

ψ(0) = λ0`(0)ψ + λ0`(0)z

on the other. Combining these two observations we derive the equation

(1− λ0Q(0))ψ(0) = λ0`(0)z . (3.6)

However, since λ−1
0 is the spectral radius of the strongly positive compact operator Q(0) and

since λ0`(0)z ∈ E+
ς by (3.4), equation (3.6) has no positive solution according to [8, Cor.12.4]

contradicting ψ(0) = κΦ0 + ζ(0)− z(0) ∈ E+
ς . Therefore, alternative (c) above is impossible and

the theorem is proven. �

4. Global Branches in the Analytic Case

In this section we shall show that assumptions (3.1)-(3.4) of Theorem 3.3 are not needed to extend
the function (λ̄, ū) from (0, ε) to (0, ∞) provided that A and ` are real analytic. In this case we
obtain a slightly better result. So, let us strengthen assumption (2.5) to

A ∈ Cω
(
Σ,L(E1, E0)

)
, ` ∈ Cω

(
Σ,L(E1, Eϑ)

)
. (4.1)

As noted in Section 2, the function (λ̄, ū) from Theorem 2.6 is real analytic in this case.

Theorem 4.1. Assume (2.1), (2.2), (2.4), (2.6), (2.8), (2.10), and (4.1). Then there is a continuous curve
R+ = {(λ̄(t), ū(t)) ; t ∈ [0, ∞)} ⊂ S extending K+. The curve R+ \ {(λ0, 0)} lies in (0, ∞)× Ė+

1
and has at each point a local analytic and injective reparametrization. Moreover, one of the alternatives

(i) ‖(λ̄(t), ū(t))‖R×E1 → ∞ as t→, or
(ii) ū(t)→ ∂Σ1 as t→ ∞

occurs. In particular, if Σ = F, then (i) occurs.
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Proof. Due to Corollary 2.4, Corollary 2.5, and Lemma 2.7 we may apply [5, Thm.9.1.1]. Con-
sequently, there is a continuous curve R+ = {(λ̄(t), ū(t)) ; t ∈ [0, ∞)} ⊂ S extending K+ and
having a local analytic and injective reparametrization. For this curve R+, one of the alternatives

(i) ‖(λ̄(t), ū(t))‖R×E1 → ∞ as t→, or
(ii) ū(t)→ ∂Σ1 as t→ ∞, or

(iii) R+ is a closed loop, i.e. there is a minimal τ > 0 such that R+ = {(λ̄(t), ū(t)) ; 0 ≤ t ≤ τ}
and (λ̄(τ), ū(τ)) = (λ̄(0), ū(0)) = (λ0, 0),

occurs. Moreover, if (λ̄(t1), ū(t1)) = (λ̄(t2), ū(t2)) for some t1 6= t2 with

ker(Fu(λ̄(t1), ū(t1))) = {0} ,

then (iii) occurs and |t1 − t2| is an integer multiple of τ. Finally, the set

{t ≥ 0 ; ker(Fu(λ̄(t), ū(t))) 6= {0}}
has no accumulation points. So, the assertion follows provided we can prove that the curve
R+ \ {(λ0, 0)} lies in (0, ∞) × Ė+

1 and that alternative (iii) does not occur. For this we use an
argument similar to [5, Thm.9.2.2]: Set

T∗ := sup {T > 0 ; (λ̄(t), ū(t)) ∈ (0, ∞)× Ė+
1 for 0 < t < T}

and note that T∗ ≥ ε according to Theorem 2.6. Assuming T∗ < ∞, there is a sequence (tj) with
tj ↗ T∗ such that (λj, uj) := (λ̄(tj), ū(tj)) ∈ (0, ∞)× Ė+

1 converges to (λ, u) := (λ̄(T∗), ū(T∗)) in
R×E1 and (λ, u) 6∈ (0, ∞)× Ė+

1 . But then, the same argument as in the proof of Theorem 3.3
yields (λ̄(T∗), ū(T∗)) = (λ0, 0). Since Theorem 2.6 implies that the bifurcation curve which lies
in R+ ×E+

1 and passes through (λ0, 0) is near this point uniquely determined by K+, we derive
that (λ̄(t), ū(t)) belongs to K+ for t less, but close to T∗. Consequently, there are sequences rk ↘ 0
and sk ↘ 0 such that (λ̄(rk), ū(rk)) = (λ̄(T∗ − sk), ū(T∗ − sk)) and ker

(
Fu(λ̄(rk), ū(rk))

)
= {0}.

But then, as stated above, the minimally chosen τ > 0 with (λ0, 0) = (λ̄(τ), ū(τ)) divides
T∗ − sk − rk for each k ∈N. This is obviously impossible. Therefore, T∗ = ∞ and alternative (iii)
above does not occur. �

Note that it is not claimed in Theorem 4.1 that R+ is a maximal connected subset of S. Other
curves or manifolds in S may intersect R+. We also point out that alternative (i) in Theorem 4.1
is stronger than saying that R+ is unbounded in R×E1 (see Theorem 3.3).

5. Example

We apply Theorem 3.3 to the example given in the introduction of this paper:

∂au− divx
(
d(U(x), a, x)∇xu

)
+ µ(U(x), a, x)u = 0 , a ∈ (0, am) , x ∈ Ω , (5.1)

u(0, x) = λ
∫ am

0
b(U(x), a, x) u(a, x)da , x ∈ Ω , (5.2)

∂νu(a, x) = 0 , a ∈ (0, am) , x ∈ ∂Ω , (5.3)

U(x) =
∫ am

0
u(a, x)da , x ∈ ∂Ω , (5.4)

where Ω ⊂ Rn is a bounded and smooth domain and am ∈ (0, ∞). Let J = [0, am). Fix
p ∈ (n + 2, ∞) and set

E1 := W2
p,N(Ω) := {v ∈W2

p(Ω); ∂νv = 0} ↪−↪→ E0 := Lp(Ω)

and
E1 := Lp(J, W2

p,N(Ω)) ∩W1
p(J, Lp(Ω)) , E0 := Lp(J, Lp(Ω)) .
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Then (2.1) and (3.1) hold. Observe that the interpolation result [17, Thm. 4.3.3] and Sobolev’s
embedding theorem imply

E1 = W2
p,N(Ω) ↪→ Eς :=

(
Lp(Ω), W2

p,N
)

1−1/p,p
.
= W2(1−1/p)

p,N ↪→ C1(Ω̄) . (5.5)

Thus int(E+
ς ) 6= ∅ while Remark 2.1 implies that

E1 ↪−↪→ F := Ws
p(J, Eϑ)

for some ϑ > 1 − 1/p = ς and some s ∈ (0, 1/p), where Eϑ
.
= W2ϑ

p,N(Ω). Let the functions
d : R × [0, am] × Ω̄ → (d, ∞) and µ, b : R × [0, am] × Ω̄ → R+ be smooth with d > 0 and
b(0, ·, ·) > 0 on (0, am)× Ω̄. For u ∈ F ↪→ L1(J, Eϑ), set

U :=
∫ am

0
u(a, ·)da ∈ Eϑ

and define

A(u, a)w := −divx
(
d(U, a, x)∇xw

)
+ µ(U, a, x)w , w ∈ E1 , u ∈ F , a ∈ J , x ∈ Ω .

Then, by [22, Prop.4.1],
A ∈ C1(F, L∞(J,L(W2

p,N(Ω), Lp(Ω)))
)

and thus in particular A ∈ C1(F,L(E1, E0)). Setting

λ`(v)u :=
∫ am

0
λb(v, a, ·)u(a)da , v ∈ F , u ∈ E1 ,

we have ` ∈ C1(F,L(E1, Eϑ)
)

by [22, Prop.4.1] together with the multiplication result of [2,
Thm.4.1]. Thus condition (2.5) holds. Note that for α ∈ [0, 1], u ∈ F and w ∈ E1 we have

Aα(u, ·)w : = (1− α)A(0, ·)w + αA(u, ·)w
= −divx

(
[(1− α)d(0, ·, ·) + αd(U, ·, ·)]∇xw

)
+ [(1− α)µ(0, ·, ·) + αµ(U, ·, ·)]w

with
(1− α)d(0, ·, ·) + αd(U, ·, ·) ≥ d .

Hence, for α ∈ [0, 1], u ∈ F, and a ∈ J the operator −Aα(u, a) is resolvent positive, generates a
contraction semigroup on each Lq(Ω), 1 < q < ∞ (see [1]), and is self-adjoint in L2(Ω). Hence
[3, III.Ex.4.7.3,III.Thm.4.10.10] entail (3.2). Since for u ∈ F fixed, the mapping

A(u, ·) : [0, am]→ L(W2
p,N(Ω), Lp(Ω))

is Hölder continuous, there is a unique positive evolution operator Πu(a, σ), 0 ≤ σ ≤ a ≤ am on
E0 corresponding to A(u, ·), see [3, II.Cor.4.4.2.,II.Thm.6.4.2]. In particular, T[u](0, ·) = Πu(·, 0) ∈
L+(Eς, E1) for u ∈ F and `(0) ∈ L+(E1, Eς), that is, (2.8) and (3.3) hold. Also note that the
maximum principle ensures that Π0(a, 0) ∈ K(Eς) is strongly positive for each a ∈ J \ {0}, see
[8, Sect.13]. Since b(0, ·, ·) > 0 we conclude (see [18, Sect.3]) that

Q(0) =
∫ am

0
b(0, a, ·)Π0(a, 0)da ∈ K(Eς)

is strongly positive, whence (3.4). Consequently, we are in a position to apply Theorem 3.3
and deduce that there is an unbounded continuum of positive solutions (λ, u) in (0, ∞) × E+

1
to (5.1)-(5.4).

Let us point out that this is just one example and can be extended in various ways. For in-
stance, one may consider more general (uniformly elliptic) differential operators subject to other
boundary conditions, see [9, Thm.8.2]. Also the regularity assumptions are not chosen optimally
and the phase space E0 can be any Lq(Ω) provided q ∈ (1, ∞). In Theorem 4.1 it is possible, in
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principle, to take E0 = L1(Ω), where one may check the analyticity condition (4.1) with the help
of [14, 5.Thm.4]. It is also worthwhile to point out that, instead of using the concept of maximal
Lp-regularity (see, in particular, assumption (2.6)), one may use other concepts like maximal
Hölder regularity [3]. We refrain from giving details and refer to [18, 19] for other examples. For
more concrete applications of global bifurcation results we refer e.g. to [21].
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