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Abstract. A system of non-linear partial differential equations modeling tumor invasion
into surrounding healthy tissue is analyzed. The model incorporates haptotaxis, i.e., the

directed migratory response of tumor cells to the extracellular environment, as well as

spatial and age structure of the tumor cells. Global existence and uniqueness of non-
negative solutions is shown.

1. Introduction

Cancer is marked by several stages of development, each of which is progressively more
aggressive than the last. In this paper we study the well-posedness of a mathematical model
describing a certain stage of tumor growth: the early vascularized stage when the tumor
begins to invade the surrounding healthy tissue. We thus assume that the tumor has just
been vascularized, i.e. a blood supply has been established (angiogenesis). The tumor is
supposed to be contained in a region of tissue Ω. The proliferating and quiescent tumor cells
are distinguished by position x ∈ Ω and age a ≥ 0. Age for proliferating tumor cells corre-
sponds to position in the cell cycle, and if a cell divides, then both daughter cells have age 0.
Age for quiescent cells corresponds to a rested position in the cell cycle (the age of a quies-
cent cell is fixed at the age it had when it transitioned from proliferation to quiescence, and
if a quiescent cell transitions back to proliferating, then aging resumes). Proliferating cells
of any age produce a matrix degradation enzyme which diffuses in the tumor environment
and degrades the extracellular matrix locally. As well as making space into which tumor
cells can move by simple diffusion, this produces oxygen (and other nutrients) essential for
tumor growth and survival. We also assume that the degradation of the extracellular matrix
results in a gradient of cell-adhesion molecules. Therefore, while the extracellular matrix
may constitute of a barrier to normal cell movement, it also provides a substrate to which
cells may adhere and upon which they may move. This directed migration up a gradient of
bound (i.e. non-diffusible) cell-adhesion molecules is called haptotaxis.

The model considered herein has been proposed in [4] and focuses on five key components
involved in tumor invasion, namely the densities of proliferating and quiescent tumor cells
(denoted by p = p(t, a, x) and q = q(t, a, x), respectively), the matrix-degradative enzyme
concentration (denoted by m = m(t, x)), the density of the bound extracellular macro-
molecules (denoted by f = f(t, x)), and the oxygen concentration (denoted by w = w(t, x)).
We assume that the tumor cells, enzyme, and oxygen remain within the domain of tissue.
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The equations modeling the above described processes read as follows:

∂tf = − k(x)m f︸ ︷︷ ︸
degradation

, (E1)

∂tm = α ∆xm︸ ︷︷ ︸
diffusion

+ d(x) P︸ ︷︷ ︸
production

− h(x) m︸ ︷︷ ︸
decay

, (E2)

∂tw = β ∆xw︸ ︷︷ ︸
diffusion

+ Γ(x, f)︸ ︷︷ ︸
production

− Λ(x,Q, P ) w︸ ︷︷ ︸
uptake

− e(x)w︸ ︷︷ ︸
decay

, (E3)

∂tq = γ ∆xq︸ ︷︷ ︸
cell motility

+ σ(a, x, w,Q, P ) p︸ ︷︷ ︸
enter from proliferation

− ε(a, x, w,Q, P ) q︸ ︷︷ ︸
exit to proliferation

− τ(a, x, w,Q, P ) q︸ ︷︷ ︸
cell death

, (E4)

∂tp = δ ∆xp︸ ︷︷ ︸
cell motility

− ∂ap︸︷︷︸
cell aging

− ∇x · (p χ(f)∇xf)︸ ︷︷ ︸
haptotaxis

+ ε(a, x, w,Q, P ) q︸ ︷︷ ︸
enter from quiescence

− σ(a, x, w,Q, P ) p︸ ︷︷ ︸
exit to quiescence

− θ(a, x, w,Q, P ) p︸ ︷︷ ︸
cell death

− b(a) p︸ ︷︷ ︸
cell division

, (E5)

for (t, x) ∈ (0,∞) × Ω and a > 0 supplemented with no flux boundary conditions with
respect to x,

∂νm = ∂νw = ∂νq = ∂νp− pχ(f)∂νf = 0 on ∂Ω , (E6)
and

p(t, 0, x) = 2
∫ ∞

0

b(a) p(t, a, x) da , (t, x) ∈ (0,∞)× Ω , (E7)

with respect to a. The equations are subject to the initial conditions

f(0, ·) = f0 , m(0, ·) = m0 , w(0, ·) = w0 , q(0, ·, ·) = q0 , p(0, ·, ·) = p0 . (E8)

In (E2)− (E5) we used the notation

Q(t, x) :=
∫ ∞

0

q(t, a, x) da , P (t, x) :=
∫ ∞

0

p(t, a, x) da (1)

for the total population densities of quiescent and proliferating tumor cells, respectively.
The proliferation-quiescence transition rates σ, quiescence-proliferation rates ε, prolifer-

ating cell death rates θ, and quiescent cell death rates τ depend on the supply of oxygen
w(t, x) and the total population densities P (t, x) and Q(t, x) of proliferating and quiescent
tumor cells. In equation (E5), b(a) is the rate at which a mother cell of age a divides per
unit time. All daughter cells have age zero as reflected by equation (E7).

The model presented above is a simplified version of the model presented in [27]. The
latter in turn is derived from the hybrid discrete-continuous tumor invasion model of An-
derson [4]. We refer to [4, 27] where the derivation of the models and the involved biological
processes are described in more detail and numerical results are given (see also [5]).

Equations (E1)−(E8) without age structure and without quiescent cells have been math-
ematically treated in [25]. For the so obtained equations global existence and uniqueness
of non-negative classical solutions is shown. Our aim here is to demonstrate how one can
incorporate age structure still obtaining global well-posedness. The inclusion of a cell life
cycle is both biologically desirable and mathematically non-trivial.
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Age-dependent population models with diffusion have been treated in many papers before,
and different approaches have been used, see for instance [8, 9, 16, 17, 18, 22, 23, 26] and the
references therein. But none of these papers includes haptotaxis. To the best of the author’s
knowledge, the only research on a haptotaxis model including age and spatial structure is
[10]. The model considered there differs from the model above in that diffusion is added to
equation (E1), which gives an additional smoothing for f .

We shall point out that the equations (E1)− (E8) without age structure are mathemati-
cally related to chemotaxis equations

∂tm = α∆xm + n(m, p) ,

∂tp = δ∆xp −∇x ·
(
p χ(p, m)∇xm

)
on the one hand and angiogenesis equations

∂tf = H(p, f) , (2)

∂tp = δ∆xp −∇x ·
(
p χ(f)∇xf

)
(3)

on the other, where often
H(f, p) = −p fr , r > 0 . (4)

For chemotaxis equations it is known that blow up of solutions may occur in finite time if
n > 1, e.g. [15]. The angiogenesis equations differ from our model in particular in that the
coupling in our case of the f -equation (E1) and the p-equation (E5) (without age structure)
is via the intermediate m-equation (E2), which imparts the smoothing property of the heat
semigroup to f needed to prove global existence. In this context we refer to [6, 7, 11, 12, 20,
21] and the references therein for results concerning (2), (3) and variants thereof. Seemingly,
global existence of solutions to (2)-(4) is known merely in space dimension one [11, 20, 21], of
weak solutions with finite energy [6] or with small initial value p0 [7] or f0 [12], respectively.

In this paper we show that the coupling of f , m, and p in (E1)− (E8) allows us to derive
global existence and uniqueness of a ‘smooth’ solution for any space dimension n ≤ 3 and
without smallness assumptions on the initial data.

Throughout we assume that Ω is a bounded and smooth domain in Rn, n ≤ 3 and that
the diffusion coefficients α , β , γ, and δ are positive constants. Concerning the data in
(E1)− (E8) we assume in the sequel that there exists some number s > 0 such that

k ∈ W 2
∞(Ω) , ∂νk = 0 on ∂Ω ,

d , h ∈ Cs(Ω̄) , e ∈ L∞(Ω) ,

}
(5)

and that all functions are non-negative. We also assume that the haptotactic sensitivity χ
satisfies

χ ∈ C1(R+) , χ ≥ 0 , χ , χ′ are uniformly Lipschitz continuous on bounded sets . (6)

Furthermore, regarding the functions

Γ ∈ C(Ω̄× R, R) , Λ ∈ C(Ω̄× R× R, R) , σ , ε , τ , θ ∈ C(R+ × Ω̄× R× R× R, R)

we suppose that they are all non-negative and that, for some c0 > 0,

|Γ(x, ξ)− Γ(x, ξ̄)| ≤ c0 |ξ − ξ̄| , (7)

|Λ(x, ξ, η)− Λ(x, ξ̄, η̄)| ≤ c0

(
|ξ − ξ̄| + |η − η̄|

)
, (8)
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and
|φ(a, x, µ, ξ, η) − φ(a, x, µ̄, ξ̄, η̄)| ≤ c0

(
|µ− µ̄| + |ξ − ξ̄| + |η − η̄|

)
(9)

for a > 0, x ∈ Ω, µ , µ̄ , ξ , ξ̄ , η , η̄ ∈ R, and every φ ∈ {σ , ε , τ , θ}. Moreover, in order to
prove global existence we will also require the existence of a function κ : R+ → R+, which
is bounded on bounded sets, such that, for φ ∈ {σ , ε , τ , θ},

|Λ(x, ξ, η)| + |φ(a, x, µ, ξ, η)| ≤ κ(µ) , a > 0 , x ∈ Ω , µ , ξ , η ∈ R . (10)

Finally, we assume that

b ∈ C(R+) , b ≥ 0 , ‖b‖∞ < ∞ . (11)

Note that the boundary condition on p in (E6) reduces to a Neumann boundary con-
dition ∂νp = 0 in case that ∂νf = 0. The latter is obtained by assuming ∂νk = 0 in (5)
and ∂νf0 = 0 as it follows from equation (E1). This assumption decouples p and f on the
boundary.

We shall prove that assumptions (5)-(11) ensure the global well-posedness of (E1)− (E8).
More precisely, we will introduce a strongly continuous semigroup {S(t) ; t ≥ 0} generated
by −∂a + δ∆x subject to the boundary conditions (E6), (E7) (cf. section 2, in particular
Proposition 2.2) allowing us to consider mild solutions to equation (E5). Our approach uses
semigroup theory with characteristics and is similar to e.g. [16, 26, 27].

A simplified and somewhat informal version of our main result Theorem 3.1 is stated in
the following

Theorem 1.1. Suppose (5)–(11) and let % > n. Given any non-negative initial value

(f0,m0, w0, q0, p0) ∈ X := W 2
% (Ω)×W 1

% (Ω)× L%(Ω)× L1(R+, L%(Ω))× L1(R+, L%(Ω))

with ∂νf0 = 0, there exists a unique global non-negative solution (f,m,w, q, p) ∈ C(R+, X)
to (E1)− (E8) such that f,m,w are classical solutions to (E1), (E2), (E3) and q and p are
mild solutions to (E4) and (E5). Moreover, the solution depends continuously on the initial
value.

As mentioned above, this theorem is a special case of a more general statement given in
Theorem 3.1. In section 2 we collect some auxiliary results needed for the proof of Theo-
rem 1.1 and Theorem 3.1. In particular, in subsection 2.1 we introduce the age-diffusion
semigroup and derive properties being important to handle the haptotaxis term. Subsec-
tion 2.2 is devoted to some further auxiliary results used for positivity of solutions. In
section 3 we first state precisely our global existence and uniqueness result. The proof will
then be performed in several steps in subsections 3.1 - 3.3.

2. Preliminaries

We abbreviate the Lebesgue spaces and the Sobolev-Slobodeckii spaces by L% := L%(Ω)
and Wϑ

% := Wϑ
% (Ω), respectively, for 1 ≤ % ≤ ∞ and ϑ ≥ 0. Moreover, we denote by

Wϑ
%,B := Wϑ

%,B(Ω) the Sobolev-Slobodeckii spaces including Neumann boundary conditions,
that is,

Wϑ
%,B :=

{ {
u ∈ Wϑ

% ; ∂νu = 0
}

, ϑ > 1 + 1/% ,
Wϑ

% , 0 ≤ ϑ < 1 + 1/% .

Notice that (
L%,W

2
%,B
)
ϑ,%

.= W 2ϑ
%,B , 2ϑ ∈ (0, 2) \ {1, 1 + 1/%} ,



A HAPTOTAXIS MODEL WITH AGE AND SPATIAL STRUCTURE 5

where (·, ·)ϑ,% denotes the real interpolation functor and .= means ‘(algebraically) equal with
equivalent norms’. We also introduce the spaces

L% := L1(R+, L%) and Wϑ
%,B := L1(R+,Wϑ

%,B) ,

and we denote by L+
% the positive cone in L%. Given two Banach spaces E and F we

write L(E,F ) for the set of all bounded linear operators from E into F , and we put
L(E) := L(E,E).

2.1. The Age-Diffusion Semigroup. Throughout this subsection, we fix 1 < % < ∞ and
we assume that

f ∈ C1(Ω̄) with ∂νf = 0 on ∂Ω . (12)

We use the notation

Afϕ := −α ∆xϕ + χ(f)∇xf · ∇xϕ , ϕ ∈ W 2
%,B ,

so that A0 = −α ∆x, and we recall that −Af generates a positive, strongly continuous
analytic semigroup Uf := {Uf (t) ; t ≥ 0} on L% [1, 24]. Due to ∂νf = 0, it is a semigroup
of contractions by [1, Thm.11.1]. Moreover, there are constants M := M(‖f‖C1(Ω̄)) and
ω := ω(‖f‖C1(Ω̄)) such that

‖Uf (t)‖L(L%,Lξ) ≤ M eωt t−(1/%−1/ξ)n/2 , t > 0 , (13)

for 1 < % ≤ ξ ≤ ∞, and also

‖Uf (t)‖L(W 2η
%,B,W 2µ

%,B) ≤ M eωt tη−µ , t > 0 , (14)

which is true provided that 0 ≤ 2η ≤ 2µ ≤ 2 with 2η, 2µ 6= 1 + 1/%.

In order to introduce the age-diffusion semigroup, we study the solution Bφ to the linear
Volterra equation

Bφ(t) = 2
∫ t

0

b(a) Uf (a) Bφ(t− a) da + 2Uf (t)
∫ ∞

0

b(a + t) φ(a) da , t ≥ 0 , (15)

where φ ∈ L% is given. We put

Df :=
{
φ ∈ L% ; for a.a. x ∈ Ω, φ(·, x) ∈ C(R+) is differentiable a.e. on (0,∞)

with φ(0, x) = 2
∫ ∞

0

b(a)φ(a, x) da ,

φ(a, ·) ∈ W 2
%,B for a > 0 and ∂aφ,Afϕ ∈ L%

}
.

Lemma 2.1. Given any ϑ ∈ [0, 2] \ {1 + 1/%} and φ ∈ Wϑ
%,B, there exists a unique solution

Bφ ∈ C(R+,Wϑ
%,B) to the Volterra equation (15). If φ ∈ L+

% , then Bφ(t) ≥ 0 for t ≥ 0.
Moreover, if φ ∈ Df , then Bφ ∈ C1(R+, L%) with ∂tBφ = BΦ, where Φ := −∂aφ−Afφ, and
AfBφ = BAf φ. Finally, there are M̄ := M̄(‖f‖C1(Ω̄)) and ω̄ := ω̄(‖f‖C1(Ω̄)) such that

‖Bφ(t)‖W ϑ
%,B

≤ M̄ eω̄t ‖φ‖Wϑ
%,B

, t ≥ 0 . (16)

In particular, there holds

‖Bφ(t)‖L%
≤ 2 ‖b‖∞ e2‖b‖∞t ‖φ‖L%

, t ≥ 0 . (17)
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Proof. Using the fact that Uf is a strongly continuous semigroup on Wϑ
%,B (of contractions

if ϑ = 0), the unique solvability of (15) is obtained by standard arguments. Together with
Gronwall’s inequality, this also implies (16), (17). Clearly, φ ∈ L+

% implies Bφ(t) ≥ 0 for
t ≥ 0. Next, if φ ∈ Df , then the second term on the right hand side of (15) is continuously
differentiable with respect to t ≥ 0 and values in Wϑ

%,B, whence Bφ ∈ C1(R+,Wϑ
%,B). Since

φ(0, ·) = Bφ(0), there holds

∂tBφ(t) = 2
∫ t

0

b(a) Uf (a) ∂tBφ(t− a) da + 2Uf (t)
∫ ∞

0

b(a + t) Φ(a) da ,

and thus ∂tBφ = BΦ by uniqueness of solutions to (15). Also note that Afφ ∈ L% implies
φ ∈ W2

%,B. Therefore,

AfBφ(t) = 2
∫ t

0

b(a) Uf (a)AfBφ(t− a) da + 2Uf (t)
∫ ∞

0

b(a + t)Afφ(a) da ,

and so AfBφ = BAf φ again by uniqueness.
�

We are now in a position to introduce the age-diffusion semigroup Sf :=
{
Sf (t) ; t ≥ 0

}
as follows: given φ ∈ L% we put

[
Sf (t) φ

]
(a) :=

{
Uf (t)φ(a− t) , 0 ≤ t < a ,

Uf (a) Bφ(t− a) , 0 ≤ a ≤ t ,

with S(t) := S0(t), that is, for f ≡ 0. Observe then that

Bφ(t) = 2
∫ ∞

0

b(a)
[
Sf (t) φ

]
(a) da , t ≥ 0 . (18)

The next proposition collects some important facts about the semigroup Sf and characterizes
its generator.

Proposition 2.2. Sf is a strongly continuous positive semigroup on L% such that∥∥Sf (t)
∥∥
L(L%)

≤ e2‖b‖∞t , t ≥ 0 , (19)

and
‖Sf (t)‖L(L%,Lξ) ≤ c(T ) t−(1/%−1/ξ)n/2 , 0 < t ≤ T , (20)

for 1 < % ≤ ξ ≤ ∞ with (1/%− 1/ξ)n < 2, and∥∥Sf (t)
∥∥
L(W2η

%,B,W2µ
%,B)

≤ c(T ) tη−µ , 0 < t ≤ T , (21)

for 0 ≤ 2η ≤ 2µ ≤ 2 with 2η, 2µ 6= 1 + 1/%, and µ− η < 1, where c(T ) := c(T, ‖f‖C1(Ω̄)).
If −Af denotes the generator of Sf and if its domain D(Af ) is equipped with the graph

norm, then D(Af ) .= D(A0),

D(A0) ↪→ Wµ
%,B , µ ∈ [0, 2) \ {1 + 1/%} , (22)

and
D(A0) ⊂ Wµ

1 (R+, L%) , 0 ≤ µ < 1 . (23)

Moreover, Df is a core for Af and

Afφ =
(
∂a + Af

)
φ , φ ∈ D(A0) . (24)
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Proof. (i) It follows from [27, Thm.4] that Sf is a strongly continuous semigroup on L% and
that (19) holds since Uf consists of contractions. Lemma 2.1 implies that Sf is a positive
semigroup.

(ii) Next, let φ ∈ W2η
%,B and 0 ≤ 2η ≤ 2µ ≤ 2 with 2η, 2µ 6= 1 + 1/%. Then, from (14) and

(16),

‖Sf (t)φ‖W2µ
%,B

≤ ‖b‖∞
∫ t

0

‖Uf (a)‖L(W 2η
%,B,W 2µ

%,B) ‖Bφ(t− a)‖W 2η
%,B

da

+ ‖b‖∞ ‖Uf (t)‖L(W 2η
%,B,W 2µ

%,B)

∫ ∞

t

‖φ(a− t)‖W 2η
%,B

da

≤ M̃ eω̃t (t1+η−µ + tη−µ) ‖φ‖W2η
%,B

(25)

for t > 0, provided that 0 ≤ µ− η < 1. This proves (21), and (20) is obtained analogously
using (13) and (17).

(iii) Let −Af denote the generator of Sf . Then(
λ + Af

)−1
φ =

∫ ∞

0

e−λt Sf (t) φ dt ∈ D(Af ) , φ ∈ L% ,

for λ > 0 sufficiently large. Therefore, using (25) with η = 0 and making λ larger if necessary,
we deduce (λ + Af )−1 ∈ L(L%, W2µ

%,B) and hence

D(Af ) ↪→ W2µ
%,B , 2µ ∈ [0, 2) \ {1 + 1/%} . (26)

(iv) Suppose 0 < µ < ϑ < 1 and let φ ∈ D(Af ). We recall that[
Sf (t)φ

]
(a) = Uf (t)φ(a− t) , a > t .

Thus

‖φ‖W µ
1 (R+,L%) = 2

∫ ∞

0

t−1−µ

∫ ∞

t

‖φ(a− t) − φ(a)‖L%
dadt

≤ 2
∫ 1

0

t−1−µ

∫ ∞

t

‖φ(a− t) − e−t Uf (t) φ(a− t)‖L%
dadt

+ 2
∫ 1

0

t−µ 1− e−t

t

∫ ∞

t

‖Uf (t) φ(a− t) ‖L%
dadt

+ 2
∫ 1

0

t−µ 1
t

∫ ∞

t

‖[Sf (t)φ](a) − φ(a)‖L%
dadt

+ 2
∫ ∞

1

t−1−µ

∫ ∞

t

‖φ(a− t) − φ(a)‖L% dadt .

Since µ > 0 and φ ∈ L%, the last term is finite. The second last term is finite because of µ < 1
and φ ∈ D(Af ). The third last term is clearly finite. Observing that

{
e−tUf (t) ; t ≥ 0

}
is

an analytic semigroup of negative type, we may apply e.g. [19, II.Thm.6.13] to derive

‖φ(a− t) − e−t Uf (t)φ(a− t)‖L% ≤ c tϑ ‖φ(a− t)‖W 2ϑ
%,B

, a > t > 0 ,

what is well-defined according to (26). Hence also the first term of the inequality above is
finite and we conclude (23).
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(v) Next we show that Df is a core for Af . First, we obtain from [13, Ex.1.1.(a), Thm.1.2]
that the set

N :=
{
ϕ ∈ W 1

1 (R+) ; ϕ(0) = 2
∫ ∞

0

b(a) ϕ(a) da
}

is dense in L1(R+). Therefore, the tensor product N ⊗W 2
%,B is dense in L% and obviously a

subset of Df . Thus Df is dense in L%.
Given φ ∈ Df we set Φ := −∂aφ−Afφ ∈ L%. Then, due to ∂tBφ = BΦ and AfBφ = BAf φ

by Lemma 2.1, we derive ∂aSf (t)φ ∈ L% and AfSf (t)φ ∈ L%. Moreover, one easily checks
that Sf (t)φ ∈ Df for t > 0. Therefore, Df is invariant under Sf (t). We then use again
∂tBφ = BΦ together with

∂s

(
Uf (s)φ(a− s)

)
= Uf (s)Φ(a− s) , a > s ,

for the second equality of the next computation to obtain, for t > 0 and a.a. a > 0, that(∫ t

0

Sf (s)Φ ds

)
(a) =

{ ∫ t

0
Uf (s) Φ(a− s) ds , a ≥ t∫ a

0
Uf (s) Φ(a− s) ds +

∫ t

a
Uf (a) BΦ(s− a) ds , a < t

=
{

Uf (t) φ(a− t) − φ(a) , a ≥ t
Uf (a)φ(0) − φ(a) + Uf (a)Bφ(t− a) − Uf (a) Bφ(0) , a < t

=
[
Sf (t)φ − φ

]
(a) ,

the last equality stemming from (18). Thus we conclude

Afφ =
(
∂a + Af

)
φ , φ ∈ Df ⊂ D(Af ) . (27)

Gathering now the facts that Df is a subset of D(Af ), dense in L%, and invariant under
Sf (t), it is indeed a core for Af .

(vi) Finally, since Df is dense in D(Af ) (equipped with the graph norm), we readily infer
from (27) that D(Af ) is independent of f , that is, D(Af ) = D(A0), and that (24) holds. �

2.2. Further Auxiliary Results. The next two results will be needed to prove positivity
of the solutions.

Lemma 2.3. D(A0) ∩ L+
% is dense in L+

% .

Proof. Since −A0 is the generator of the strongly continuous positive semigroup S0 on L%

according to Proposition 2.2, we may choose ω sufficiently large to obtain from [2, II.Sect.6.4]
that ω + A0 is resolvent positive with spectrum entirely in the complex left half-plane,
that is, ω + A0 is a positive operator in the sense of [2]. The assertion follows then from
D(A0) = D(ω + A0) and [2, V.Prop.2.7.2]. �

We recall that W 2
% ↪→ C1(Ω̄) for % > n.

Lemma 2.4. Let % > n and f ∈ C1([0, T ],W 2
%,B) with T > 0. Let Mij ∈ C1

(
[0, T ],L(L%)

)
with M12(t),M21(t) ≥ 0 for t ∈ [0, T ]. Define

A(t) :=
[

Af(t) 0
0 −γ∆x

]
, M(t) :=

[
M11(t) M12(t)
M21(t) M22(t)

]
for t ∈ [0, T ]. Then, given any u0 ∈

(
D(A0) ∩ L+

%

)
×
(
W2

%,B ∩ L+
%

)
, there exists a unique

classical solution

u ∈ C1([0, T ], L% × L%) ∩ C([0, T ], D(A0)×W2
%,B)
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with u(t) ∈ L+
% × L+

% , t ∈ [0, T ], to the evolution equation

u̇ +
(
A(t)−M(t)

)
u = 0 , u(0) = u0 . (28)

Proof. Set F0 := L% × L%, F1 := D(A0)×W2
%,B and denote by F+

0 := L+
% × L+

% the positive
cone in F0. Clearly, γ∆x (naturally defined on W2

%,B) generates an analytic semigroup of
contractions on L%. Hence, it follows from Proposition 2.2 that −A(t) is for every t ∈ [0, T ]
the generator of a strongly continuous semigroup {e−sA(t) ; s ≥ 0} on F0 satisfying

‖e−sA(t)‖L(F0) ≤ e2‖b‖∞s , s ≥ 0 .

In particular,
(
− A(t)

)
t∈[0,T ]

is stable in the sense of [19, §5.2]. Moreover, the domain of

A(t) equals F1 for every t ∈ [0, T ] and
(
t 7→ A(t)φ

)
∈ C1([0, T ], F0) for φ ∈ F1. According to

[19, §5.2] this warrants the existence of a unique evolution system UA(t, s), 0 ≤ s ≤ t ≤ T ,
on F0. By construction of this evolution system (cf. [19, p.136f]) it is obviously posi-
tive since the semigroups corresponding to γ∆x and −Af(t) are all positive. Owing to
M∈ C1([0, T ],L(F0)) and [19, 5.Thm.2.3], the same arguments show that there is an evolu-
tion system corresponding to

(
−A(t)+M(t)

)
t∈[0,T ]

. Consequently, (28) possesses a unique
classical solution u ∈ C1([0, T ], F0) ∩ C([0, T ], F1) since u0 ∈ F1. Letting

ω := max
t∈[0,T ]

(
‖M11(t)‖L(L%) + ‖M22(t)‖L(L%)

)
and defining

Aω(t) := ω1F0 + A(t) , Gω(t) := ω1F0 + M(t)

we have Gω(t)φ ∈ F+
0 and UAω (t, s)φ ∈ F+

0 for φ ∈ F+
0 . Recalling that u0 ∈ F+

1 , Banach’s
fixed point theorem guarantees that the sequence

(
uj

)
j∈N ⊂ F+

0 , defined by

u0 := u0 , uj+1(t) := UAω (t, 0) u0 +
∫ t

0

UAω (t, s)Gω(s) uj(s) ds , t ∈ [0, T ] , j ∈ N ,

converges towards u in C([0, T̃ ], F0) for T̃ > 0 sufficiently small. This proves u(t) ∈ F+
0 for

t ∈ [0, T̃ ] since F+
0 is closed in F0. The assertion now readily follows. �

In order to state the next results, we need some notation. Let E be a Banach space.
For an interval J ⊂ R+ containing 0 we put J̇ := J \ {0}. Given µ ∈ R, we denote by
BCµ(J̇ , E) the Banach space of all functions u : J̇ → E such that

(
t 7→ tµu(t)

)
is bounded

and continuous from J̇ into E, equipped with the norm

u 7→ ‖u‖Cµ(J̇,E) := sup
t∈J̇

tµ ‖u(t)‖E .

We write Cµ(J̇ , E) for the closed linear subspace thereof consisting of all u satisfying
tµu(t) → 0 in E as t → 0+. Note that Cν((0, T ], E) ↪→ Cµ((0, T ], E) for ν ≤ µ and
T > 0.

If {U(t) ; t ≥ 0} is a strongly continuous semigroup on E, we set Uξ(t) := U(ξt) for t ≥ 0
and ξ > 0. Furthermore, for any measurable function u : J̇ → E we put

U ? u(t) :=
∫ t

0

U(t− s) u(s) ds , t ∈ J̇ ,

whenever these integrals exist.
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We now take f ≡ 0 in the previous considerations and denote by {U(t) ; t ≥ 0} the
analytic semigroup on L% generated by ∆x subject to Neumann boundary conditions. By
{V(t) ; t ≥ 0} we denote the analytic semigroup on L% generated by γ∆x. Finally, we put
S(t) := S0(t), i.e. {S(t) ; t ≥ 0} is the semigroup on L% with generator −∂a + δ∆x (cf.
Proposition 2.2).

Lemma 2.5. Let 1 < % < ∞ , 2µ ∈ (0, 2) \ {1 + 1/%} and T, ξ > 0. Then

(i) Uξϕ := [t 7→ Uξ(t)ϕ] ∈ Cµ

(
(0, T ],W 2µ

%,B
)

for ϕ ∈ L% ,
(ii) Uξϕ ∈ C1−µ

(
(0, T ],W 2

%,B
)

for ϕ ∈ W 2µ
%,B ,

(iii) Vφ , Sφ ∈ Cµ

(
(0, T ], W2µ

%,B
)

for φ ∈ L% .

Proof. Parts (i), (ii) and the first part of (iii) are shown analogously to [3, Prop.6] (see
also [25, Lem.2.3]). As for the second part of (iii) one shows that Sφ ∈ BCµ((0, T ], W2µ

%,B)
for φ ∈ L% using Lemma 2.1 and Proposition 2.2. The density of W2µ

%,B in L% and again
Proposition 2.2 entail

lim
t→0+

tµ ‖S(t)φ‖W2µ
%,B

= 0

as in [3, Prop.6]. �

3. The Main Result

To state our main result we recall the definition of a mild solution. Let −A be the
generator of a strongly continuous semigroup {e−tA ; t ≥ 0} on a Banach space E. Given
u0 ∈ E, we mean by a (global) mild E-solution to the Cauchy problem

u̇ + Au = F (t, u) , u(0) = u0 ,

a function u ∈ C(R+, E) such that F (·, u) ∈ L1,loc(R+, E) and

u(t) = e−tAu0 +
∫ t

0

e−(t−s)A F (s, u(s)) ds , t ≥ 0 .

The main result concerning the global well-posedness of (E1)− (E8) reads as follows:

Theorem 3.1. Let assumptions (5)–(11) be satisfied, and let (1 ∨ n/2) < % < ∞ and
2ε ∈ (0, 2) \ {1 + 1/%}. Given any non-negative initial value

(f0,m0, w0, q0, p0) ∈ Y := W 2
%,B ×W 2ε

%,B × L% × L% × L%

there exists a global non-negative solution (f,m, w, q, p) to (E1)− (E8) such that

f ∈ C(R+,W 2
%,B) ∩ C1(Ṙ+,W 2

%,B) ,

m ∈ C(R+,W 2ε
%,B) ∩ C(Ṙ+,W 2

%,B) ∩ C1(Ṙ+, L%) ,

w ∈ C(R+, L%) ∩ C(Ṙ+,W 2
%,B) ∩ C1(Ṙ+, L%) ,

q , p ∈ C(R+, L%) ∩ C(Ṙ+, Wξ
%,B) , ξ ∈ (0, 2) \ {1 + 1/%} ,

where q and p are mild solutions to (E4) and (E5), respectively. This solution satisfies

tλ ‖m(t)‖W 2
%
→ 0 and tη

(
‖p(t)‖W2η

%
+ ‖q(t)‖W2η

%

)
→ 0 as t → 0+ (29)

for all (η, λ) such that

n/% < 2η < 2 , 2η ≥ 1 , (1− ε) ∨ η ≤ λ < 1 , (30)
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and it is the only solution satisfying (29) for some (η, λ) as in (30). Moreover, P and Q

belong to C1(Ṙ+, L%)∩C(Ṙ+,W 2
%,B). Finally, the solution depends continuously in Y on the

initial value.

Provided ε, σ, and τ possess more regularity with respect to x, w, Q, and P , the mild
solution q to (E4) is actually a classical solution.

We shall point out that the restriction on the integrability index % and also the regularity
assumptions on the initial values seem to be fairly weak (except for the first equation (E1)
which lacks a smoothing effect due to diffusion).

Moreover, the uniqueness (and existence) result in Theorem 3.1 is more general than in
Theorem 1.1 in the sense that any (mild) solution in C(R+, X) satisfies (29) for some (η, λ)
as in (30).

The proof of Theorem 3.1 will be divided into several steps.

3.1. Proof of Thm. 3.1: Local Existence and Uniqueness. We first rewrite equations
(E1)−(E8) in a more convenient form. In the following, we will suppress the variables a and x
if no confusion seems to arise and we thus simply write φ(w,Q, P ) instead of φ(a, x, w,Q, P )
for φ ∈ {σ, τ, ε, θ}. Similarly we do this for Γ and Λ. For u :=

(
f,m, w, q, p

)
we use (1) and

put

R1(u) := d P − h m ,

R2(u) := Γ(f) − Λ(Q,P ) w − ew ,

R3(u) := σ(w,Q, P ) p − ε(w,Q, P ) q − τ(w,Q, P ) q ,

R4(u) := −∇x ·
(
p χ(f)∇xf

)
− b p + τ(w,Q, P ) q − σ(w,Q, P ) p − θ(w,Q, P ) p .

Local existence and uniqueness is based on the following proposition whose proof is
adapted from [25, Prop.3.1].

Proposition 3.2. Let 1 < % < ∞ and n/% < 2η ≤ 2ξ ≤ 2µ < 2 with 2η ≥ 1. Given r ≥ 1
there exists T := T (r) > 0 such that, for any

u0 :=
(
f0,m0, w0, q0, p0

)
∈ E1−µ := W 2

%,B ×W
2(1−µ)
%,B × L% × L% × L%

with ‖u0‖E1−µ
≤ r, the problem

f(t) = exp
(
− k

∫ t

0
m(s)ds

)
f0 , t ∈ I ,

m(t) = Uα(t) m0 + Uα ? R1(u)(t) , t ∈ I ,
w(t) = Uβ(t) w0 + Uβ ? R2(u)(t) , t ∈ I ,
q(t) = V(t) q0 + V ? R3(u)(t) , t ∈ I ,
p(t) = S(t) p0 + S ? R4(u)(t) , t ∈ I ,

 (M)

has a unique solution

u := (f,m,w, q, p) ∈ VT := VT (µ, ξ, η) := WT ×XT × YT × ZT × ZT ,

where I := [0, T ] and

WT := C
(
I,W 2

%,B
)

, XT := Cµ

(
İ ,W 2

%,B
)
∩ C

(
I,W

2(1−µ)
%,B

)
,

YT := C
(
I, L%

)
, ZT := Cξ

(
İ , W2η

%,B
)
∩ C(I, L%

)
.
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Moreover, the solution depends continuously on the initial value in the sense that, if ū ∈ VT

denotes the solution corresponding to ū0 ∈ E1−µ with ‖ū0‖E1−µ
≤ r, then ū → u in VT as

ū0 → u0 in E1−µ.

Proof. In the following we take T ∈ (0, 1). First we claim that whenever 0 ≤ ϑ − ν < 1,
ζ < 1, and R ∈ C1−

b

(
VT , Cζ(İ ,W 2ν

%,B)
)

there holds

U ? R ∈ C1−
b

(
VT , Cϑ+ζ−ν−1(İ , W 2ϑ

%,B)
)

, (31)

where C1−
b means ‘uniformly Lipschitz continuous on bounded sets’. In addition, analogous

statements also hold for V and S, where the spaces W 2ν
%,B are replaced by W2ν

%,B. To prove
(31) observe that, if

‖R(v)(t)−R(v̄)(t)‖W 2ν
%,B

≤ c(r) t−ζ ‖v − v̄‖VT
, t ∈ (0, T ] , ‖v‖VT

, ‖v̄‖VT
≤ r ,

then, by (14),

‖U ?
(
R(v)−R(v̄)

)
(t)‖W 2ϑ

%,B
≤ c

∫ t

0

(t− s)ν−ϑ ‖R(v)(s)−R(v̄)(s)‖W 2ν
%,B

ds

≤ c(r) B(1 + ν − ϑ, 1− ζ) t1+ν−ϑ−ζ ‖v − v̄‖VT

with B denoting the beta function, whence (31). Similarly one shows this for V and S,
in the latter case using Proposition 2.2. Notice then that p ∈ Cξ((0, T ], W2η

%,B) implies
P ∈ Cξ((0, T ],W 2η

%,B) and that W 2η
%,B ↪→ L∞. Therefore, analogously to (15) in [25] (see also

[25, Lem.2.1]) we obtain for 2ζ > 0 sufficiently small that

R1 ∈ C1−
b

(
VT , Cµ((0, T ],W 2ζ

%,B)
)

.

Furthermore, (7), (9) imply

R2 ∈ C1−
b

(
VT , Cξ((0, T ], L%)

)
, R3 , R4 ∈ C1−

b

(
VT , Cξ((0, T ], L%)

)
.

Hence, defining ϑ := ζ ∧ (1− ξ) > 0, R :=
(
R1, R2, R3, R4

)t, and the diagonal matrix

U := diag
[
Uα, Uβ , V, S

]
,

we derive from (31) that

‖U ?
(
R(u)−R(ū)

)
‖XT×YT×ZT×ZT

≤ c(r)Tϑ ‖u− ū‖VT
, ‖u‖VT

, ‖ū‖VT
≤ r . (32)

We also put

F1(u)(t) := exp
(
−k

∫ t

0

m(s) ds

)
f0

and notice that
‖F1(u)− F1(ū)‖WT

≤ c(r) T 1−µ ‖u− ū‖VT

for ‖u‖VT
, ‖ū‖VT

≤ r and ‖f0‖W 2
%,B

≤ r as it follows from [25, Lem.2.2]. Finally, setting

ũ0 :=
(
m0, w0, q0, p0

)
∈ W

2(1−µ)
%,B × L% × L% × L%

and
F (u)(t) :=

(
F1(u)(t) , U(t)ũ0 + U ?R(u)(t)

)
,
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problem (M) can be rewritten as a fixed point equation of the form F (u) = u ∈ VT . In
order to solve this fixed point equation, we observe that V 0 :=

(
f0,U ũ0

)
∈ VT by Lemma 2.5

and hence

‖F (u)− F (ū)‖VT
≤ c(r) Tϑ ‖u− ū‖VT

,

‖F (u)− V 0‖VT
≤ c(r) Tϑ ,

provided T ∈ (0, 1), ‖u‖VT
, ‖ū‖VT

≤ r, and ‖f0‖W 2
%,B

≤ r. Existence of a unique fixed point
and the continuous dependence on the initial value is then obtained as in [25, Prop.3.1]. �

We now turn to the proof of the existence and uniqueness statement of Theorem 3.1.
Thus choose an initial value

(f0,m0, w0, q0, p0) ∈ W 2
%,B ×W 2ε

%,B × L% × L% × L%

with parameters as stated in Theorem 3.1. Fixing (η, λ) as in (30) and putting (ξ, µ) := (η, λ),
Proposition 3.2 yields a mild solution

(f,m,w, q, p) ∈ VT (λ, η, η)

to (E1) − (E8) on an interval [0, T ] that depends continuously on the initial value. Given
another pair (η̄, λ̄) obeying (30), we set

η∗ := η ∧ η̄ , ξ∗ := η ∨ η̄ , µ∗ := λ ∨ λ̄ ,

and obtain n/% < 2η∗ ≤ 2ξ∗ ≤ 2µ∗ < 2, 2η∗ ≥ 1, and

VT (λ, η, η) ∪ VT (λ̄, η̄, η̄) ↪→ VT (µ∗, ξ∗, η∗) .

According to Proposition 3.2 this implies the uniqueness statement of Theorem 3.1. More-
over, we derive (29) and q, p ∈ C((0, T ], Wξ

%,B) for ξ ∈ (0, 2) \ {1 + 1/%}. Finally, we may
extend this solution to a maximal solution (f,m,w, q, p) on some interval J = [0, t+), which
would blow up in W 2

% ×W 2ε
% × L% × L% × L% if t+ < ∞.

As for the regularity, one shows that f ∈ C1(J̇ ,W 2
%,B) and that m is a classical solution

and belongs to C1(J̇ , L%) ∩ C(J̇ ,W 2
%,B) as in [25, Prop.3.1] (note that P ∈ Cξ(J̇ ,W 2η

%,B)).
Next, from [2, II.Thm.5.3.1] it follows that there is ν > 0 such that

w ∈ Cν(J̇ , L%) and q ∈ Cν(J̇ , W2η
%,B) . (33)

Furthermore, owing to (18) and

p(t) = S(t) p0 +
∫ t

0

S(t− s) R4(u(s)) ds , t ∈ J , (34)

we deduce that

2
∫ ∞

0

b(a) p(t, a) da = Bp0(t) +
∫ t

0

BR4(u(s))(t− s) ds , t ∈ J .
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Therefore, integrating (34) with respect to a we see that P ∈ C(J̇ ,W 2η
%,B) ∩ C(J, L%) is a

mild solution to

∂tP − δ∆xP = −∇x ·
(
P (t)χ(f(t))∇xf(t)

)
−
∫ ∞

0

(θ + σ)
(
w(t), Q(t), P (t)

)
p(t, a) da

+
∫ ∞

0

b(a) p(t, a) da +
∫ ∞

0

τ
(
w(t), Q(t), P (t)

)
q(t, a) da

=: z(t) ,

so that P ∈ Cν(J̇ ,W 2η
%,B) by [2, II.Thm.5.3.1]. On the one hand, (9) together with (33) yield

z ∈ Cν(J̇ , L%), and invoking [2, II.Thm.1.2.2] we conclude that P ∈ C1(J̇ , L%)∩C(J̇ ,W 2
%,B)

is a classical solution to

∂tP − δ∆xP = z(t) , P (0) = P 0 , ∂νP = 0 . (35)

Analogously we conclude Q ∈ C1(J̇ , L%) ∩ C(J̇ ,W 2
%,B). On the other hand, it follows from

(7), (8), and (33) that R2 ∈ Cν(J̇ , L%), and therefore w ∈ C1(J̇ , L%) ∩ C(J̇ ,W 2
%,B) is a clas-

sical solution again by [2, II.Thm.1.2.2].

3.2. Proof of Thm. 3.1: Positivity. (i) Suppose first that % > n and let

m0 , w0 ∈ W 2
%,B ∩ L+

% , q0 ∈ W2
%,B ∩ L+

% , p0 ∈ D(A0) ∩ L+
% ↪→ Wϑ

%,B , ϑ < 2 .

Then we clearly have P ∈ C(J,Wϑ
%,B), whence m ∈ C(J,W 2

%,B) by (E2), [25, Lem.2.1(iii)],
and assumption (5). Moreover, there holds f ∈ C1(J,W 2

%,B) by (E1). In addition, we obtain
q ∈ C(J, Wϑ

%,B) and w ∈ C(J,Wϑ
%,B). We set

φ(t) := φ
(
w(t), Q(t), P (t)

)
for φ ∈ {ε, τ, σ, θ}

and approximate ε, τ, σ, θ ∈ C(J, L+
∞(R+×Ω)) by εk, τk, σk, θk ∈ C1(J, L+

∞(R+×Ω)). More-
over, due to [1] we may choose fk ∈ C1(J,C2

B(Ω̄)) with fk → f in C(J,W 2
%,B). Defining

then

Mk(t) :=

 −∇x ·
(
χ(f(t))∇xfk(t)

)
− θk(t)− σk(t)− b τk(t)

σk(t) −εk(t)− τk(t)


we have Mk ∈ C1(J,L(L% × L%)). Given any T ∈ J̇ , we may then apply Lemma 2.4 to
obtain a unique classical solution uk = (pk, qk) ≥ 0 on [0, T ] to

u̇k + A(t)uk = Mk(t) uk , uk(0) = (p0, q0) ,

where

A(t) =
[

Af(t) 0
0 −γ∆x

]
.

From (21) it readily follows that

(pk, qk) → (p, q) in C([0, T ], Wϑ
%,B ×Wϑ

%,B) .

Thus q(t), p(t) ≥ 0 for t ∈ [0, T ] while f(t),m(t), w(t) ≥ 0 are obvious.
(ii) Positivity in the general case now follows from Lemma 2.3 and the continuous depen-

dence of the solution on the initial values as stated in Proposition 3.2.
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3.3. Proof of Thm. 3.1: Global Existence. We first observe that the no flux boundary
conditions, (35) and its analogue for Q imply

d
dt

∫
Ω

(P + Q) dx =
∫

Ω

∫ ∞

0

b p dadx −
∫

Ω

∫ ∞

0

{
θ(w,Q, P ) p + τ(w,Q, P ) q

}
dadx

≤ ‖b‖∞
∫

Ω

P dx ,

hence, for T > 0,

‖Q(t)‖L1 + ‖P (t)‖L1 ≤ c(T ) , t ∈ J ∩ [0, T ] . (36)

Global existence will then be an immediate consequence of the next lemma. In the
following, we put JT := J ∩ [0, T ] for T > 0.

Lemma 3.3. Suppose that ‖P (t)‖Lρ
≤ c(T ) for t ∈ JT with ρ ∈ [1, %) and suppose there

exists ξ ∈ (ρ, 2ρ ∧ %] such that ξ
(

n
ρ − 2) < 2(ρ− 1 + 2ρ

n ). Then ‖P (t)‖Lξ
≤ c(T ) for t ∈ JT .

Proof. The proof follows closely the lines of [25, Prop.5.1] and we thus just give a brief
sketch. Note that (35) is of the same form as the p-equation considered in [25]. Hence,
introducing

φ(z) := e
1
δ

R z
0 χ(s)ds

and using (E1), (E5) and the fact that f is bounded on J × Ω, we have for t ∈ J̇

d
dt

∫
Ω

φ(f)
(

P

φ(f)

)ξ

dx ≤ −c0

∫
Ω

φ(f)

∣∣∣∣∣∇x

(
P

φ(f)

)ξ/2
∣∣∣∣∣ dx

+ c1

∫
Ω

m

(
P

φ(f)

)ξ

dx

+ ξ

∫
Ω

(
P

φ(f)

)ξ−1 ∫ ∞

0

τ(w,Q, P ) q dadx

+ ξ ‖b‖∞
∫

Ω

(
P

φ(f)

)ξ

dx .

(37)

In order to handle the third term we note that

‖w(t)‖∞ ≤ c(T ) , t ∈ JT ∩ [ζ,∞) =: JT,ζ , (38)

for ζ ∈ (0, T ) by (E3) and f ∈ L∞(J × Ω). Therefore∥∥∥∫ ∞

0

σ(w(t), Q(t), P (t)) p(t) da
∥∥∥

Lρ

≤ c(T ) , t ∈ JT,ζ ,

owing to (10) and P ∈ L∞(JT , Lρ). We use (13) when applying this estimate to the in-
equality

∂tQ − γ∆xQ ≤
∫ ∞

0

σ(w(t), Q(t), P (t)) p(t) da ,

which holds by (E4) and the positivity of p and q. We hence derive that

‖Q(t)‖Lr′ ≤ c(T ) , t ∈ JT,ζ , (39)

where r′ is the dual exponent of r > 1 with
nξ

nξ + 2ρ
<

1
r

< 1 +
2
n
− 1

ρ
.
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Also, there holds
‖m(t)‖Lr′ ≤ c(T ) , t ∈ JT,ζ ,

by (E2) and (13). Using this last estimate, Young’s inequality, and the Gagliardo-Nirenberg
inequality in [14] we deduce∫

Ω

m

(
P

φ(f)

)ξ

dx ≤ c(δ) ‖m(t)‖r′

Lr′
+ δ

∫
Ω

(
P

φ(f)

)ξr

dx

≤ c(T, δ) + δ c0

∥∥∥∥ P

φ(f)

∥∥∥∥ξ(r−1)

Lρ

∥∥∥∥∥
(

P

φ(f)

)ξ/2
∥∥∥∥∥

2

W 1
2

≤ c(T, δ)

(
1 +

∥∥∥∥ P

φ(f)

∥∥∥∥ξ

Lξ

)
+ c(T ) δ

∫
Ω

∣∣∣∣∣∇
(

P

φ(f)

)ξ/2
∣∣∣∣∣
2

dx .

Similar arguments and (39) yield an analogous estimate for the third term in (37). We may
choose then δ > 0 sufficiently small so that from (37)

d
dt

∫
Ω

φ(f)
(

P

φ(f)

)ξ

dx ≤ c(T ) + c(T )
∫

Ω

φ(f)
(

P

φ(f)

)ξ

dx ,

whence ‖P (t)‖Lξ
≤ c(T ) for t ∈ JT . �

To finish off the proof of Theorem 3.1, we recall that it is sufficient to show that the
solution (f,m,w, q, p) does not blow up in finite time in the space W 2

% ×W 2ε
% ×L%×L%×L%

according to subsection 3.1. Starting with (36), a repeated application of Lemma 3.3 shows
that ‖P (t)‖L%

≤ c(T ), t ∈ JT , for any T > 0 since n ≤ 3. Using maximal regularity for the
m-equation (E2) we may argue then as in section 5 of [25] to conclude that this estimate
ensures

‖m(t)‖W 2ε
%,B

+ ‖w(t)‖L%
+ ‖f(t)‖W 2

%,B
≤ c(T ) , t ∈ JT .

In particular, the estimate on f yields∥∥∇x ·
(
pχ(f(t))∇xf(t)

)∥∥
L%
≤ c(T ) ‖p‖W2η

%,B
, t ∈ JT ,

for n/% < 2η < 2 and 2η ≥ 1 (see [25, Lem.2.1]). Therefore, setting for v = (p, q)

F (t, v) :=
[
−σ(t)− θ(t)− b τ(t)

σ(t) −ε(t)− τ(t)

] (
p
q

)
+
(
−∇x ·

(
pχ(f(t))∇xf(t)

)
0

)
and using (10) and (38), we obtain

‖F (t, v)‖L%×L%
≤ c(T ) ‖v‖W2η

%,B×L%
, t ∈ JT .

Since v = (p, q) is a mild solution to

v̇ +Av = F (t, v) , v(0) = (p0, q0) ,

where

A :=
[

A0 0
0 −γ∆x

]
,

we deduce with the aid of the estimate

‖e−tA‖L(L%×L%,W2η
%,B×L%) ≤ c(T ) t−η , t ∈ J̇T ,

(cf. (21)), that ‖v(t)‖W2η
%,B×L%

≤ c(T ) for t ∈ JT ∩ [ζ,∞) with ζ > 0. Hence, the solution
(f,m, w, q, p) does not blow up in finite time which proves that it exists globally. The proof
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of Theorem 3.1 is thus complete.
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