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Abstract. We show that a model describing the interaction between nor-
mal and infectious prion proteins admits global solutions. More precisely,

supposing the involved degradation rates to be bounded, we prove global exis-
tence and uniqueness of classical solutions. Based on this existence theory, we
provide sufficient conditions for the existence of global weak solutions in the
case of unbounded splitting rates. Moreover, we prove global stability of the

disease-free steady state.

1. Introduction

The present paper aims at investigating mathematically a recent model that de-
scribes the dynamics of prion proliferation. Prions seem to be widely regarded as the
infectious agent causing fatal diseases known as bovine spongiform encephalopathy
(BSE) for cattle, scrapie for sheep, or Kuru and Creutzfeld-Jacob for humans. In
this theory, prions are thought to be a polymeric form of a normal protein monomer
PrPC . The polymeric infectious prions PrPSc have a tendency to attach units of
PrPC in a stringlike formation, converting the latter to the infectious form. This
mechanism makes PrPSc polymers more stable and is called nucleated polymer-
ization. Above some critical size, PrPSc is very stable and polymerizes rapidly to
form chains, possibly involving several thousands of monomer units. Nevertheless,
PrPSc prions also can split, usually into smaller infectious prions. However, if a
polymer falls below the critical size, it degrades immediately into PrPC monomers.
A model for nucleated polymerization has recently been proposed in [4], [5] (see also
the references therein) describing the mechanism by which prions are hypothesized
to replicate. Denoting the number of PrPC monomers at time t ≥ 0 by v(t) ≥ 0
and introducing a population density u = u(t, y) ≥ 0 for the infectious PrPSc

polymers at time t ≥ 0 and size y greater than the minimum length y0 > 0, the
interaction of the PrPC monomers and the PrPSc polymers can be described by
the coupled system consisting of the ordinary differential equation

v̇ = λ − γ v − τ v

∫ ∞

y0

u(t, y) dy + 2

∫ ∞

y0

u(t, y)β(y)

∫ y0

0

y′ κ(y′, y) dy′dy (1)

and the partial differential equation

∂tu + τ v(t) ∂yu = −
(

µ(y) + β(y)
)

u(y) + 2

∫ ∞

y

β(y′)κ(y, y′)u(y′) dy′ (2)
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for y ∈ (y0,∞) subject to the boundary condition

u(t, y0) = 0 , t > 0 . (3)

These equations are supplemented with the initial conditions

v(0) = v0 , u(0, y) = u0(y) , y ∈ (y0,∞) . (4)

Equation (1) includes a source term λ ≥ 0, while the term −γv(t), with γ ≥ 0, takes
into account metabolic degradation of monomers. The constant τ > 0 denotes the
polymerization rate. Moreover, β(y) ≥ 0 is the length-dependent fragmentation
rate of polymers of size y > y0, and κ(y′, y) is the probability of a polymer of
size y > y0 splitting into two pieces y′ < y and y − y′ < y. The transport term
τv(t)∂yu(t, y) in equation (2) accounts for the loss of polymers of size y due to
lengthening. A loss of polymers according to metabolic degradation is reflected by
the term −µ(y)u(y). Finally, the terms involving β on the right hand side of equa-
tion (2) represent the loss and gain of PrPSc polymers caused by splitting. For
a more detailed explanation of each process we refer to [4], [5] and the references
therein.

Let us point out that (1), (2) is a coupled system of non-linear, non-local equa-
tions. In order to solve this equations we employ Kato’s theory for hyperbolic
evolution equations. That is, given a function v with appropriate regularity prop-
erties, we construct an evolution system for the partial differential equation (2).
We should remark that in the absence of the kernel operator on the right hand
side of (2), an evolution system can readily be obtained by using the method of
characteristics.
It should also be pointed out that equations (1), (2) can be handled as an abstract
quasilinear hyperbolic system in order to obtain local existence, see for instance
[9, §6.4]. However, this approach does not seem to yield optimal results for equa-
tions (1), (2).

Before outlining the contents of this paper, we summarize the present-state of
knowledge on the above model. It seems that only kernels of the form

µ ≡ const , β(y) = β y , κ(y′, y) =
1

y
(5)

have been considered so far. This choice of kernels leads to a closed system of
ordinary differential equations for v and

U(t) :=

∫ ∞

y0

u(t, y) dy , P (t) :=

∫ ∞

y0

y u(t, y) dy .

Indeed, (1) reduces to

v̇ = λ − γ v − τ v U + β y2
0 U , (6)

and integrating (2) yields the equations

U̇ = β P − µU − 2β y0 U , (7)

Ṗ = τ v U − µP − β y2
0 U , (8)
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which, together with (6), are uniquely globally solvable. In addition, it has been
shown in [5] that the disease-free steady state (v, U, P ) = (λ/γ, 0, 0) for the equa-
tions (6)-(8) is globally stable provided

βy0 + µ >

√

βλτ

γ
. (9)

If one reverses the strict inequality sign in (9) it has also been proved in [5] that there
exists a prion disease steady state which is locally asymptotically stable. These re-
sults have been improved in [10] in that the disease-free steady state is globally
asymptotically stable also for an equality sign in (9) and in that the disease steady
state is even globally asymptotically stable for (9) with a reversed strict inequality
sign.
Observe that the solvability of (6)-(8) implies that the original equations (1), (2)
are no longer coupled since v is completely determined for all t ≥ 0. Hence, as
shown in [3], the partial differential equation (2) (with kernels as in (5)) can be
solved for u = u(t, y) by using the method of characteristics combined with semi-
group theory. Moreover, it has also been shown in [3] that u converges either to 0
or to the disease steady state according to whether or not (9) holds.

Our aim is to consider quite general kernels, merely assuming suitable growth
conditions. More precisely, after collecting some auxiliary results in section 2, we
show in section 3 that (1)-(4) is globally well-posed provided µ and β are bounded,
see Theorem 3.1. The basic idea is to solve equation (1) for a fixed, suitable function
ū and then to substitute the obtained solution vū into equation (2). Using Kato’s
theory for hyperbolic evolution equations, we solve then equation (2) in order to
obtain a classical solution uū. A fixed point argument for the map ū 7→ uū yields
then local existence and uniqueness of a solution pair (v, u) for (1)-(4). Suitable a
priori estimates guarantee global existence. A weak formulation of (2) allows then
to extend in section 4 the existence results to unboundend kernels by using a weak
compactness method, see Theorem 4.3. We also prove finite speed of propagation
for the weak (and classical) solutions to (2). Finally, in section 5 we show that the
disease-free steady state is globally asymptotically stable provided some suitable
lower and upper bounds for the splitting kernels are available. We refer to Theorem
5.3 for a precise statement.
Clearly, the method described above does not yield uniqueness of weak solutions.
This issue will be the topic of future work [8].

2. Preliminaries

In the following, we set Y := (y0,∞) and assume that

µ , β ∈ L+
∞(Y ) , (10)

where L+
∞(Y ) stands for the positive cone in L∞(Y ). We also assume that κ ≥ 0

is measurable on K := {(y′, y) ; y0 < y < ∞ , 0 < y′ < y} and satisfies

κ(y′, y) = κ(y − y′, y) , (y′, y) ∈ K , (11)
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which means binary splitting. Moreover, we suppose the number of monomer units
to be preserved during splitting, that is,

2

∫ y

0

y′ κ(y′, y) dy′ = y , a.e. y ∈ Y . (12)

Furthermore, we let
τ > 0 , λ , γ ≥ 0 . (13)

It is easy to check that (11), (12) imply
∫ y

0

κ(y′, y) dy′ = 1 , a.e. y ∈ Y . (14)

Observe that the natural constraints (11), (12) hold if κ is of self-similar form

κ(y′, y) =
1

y
κ0

(

y′

y

)

, y > y0 , 0 < y′ < y , (15)

where κ0 is a non-negative integrable function defined on (0, 1) such that

κ0(y) = κ0(1 − y) , y ∈ (0, 1) ,

∫ 1

0

κ0(y) dy = 1 . (16)

This allows to capture κ in (5) by taking κ0 ≡ 1. Also note that the operator L,
given by

L[u](y) := −
(

µ(y) + β(y)
)

u(y) + 2

∫ ∞

y

β(y′)κ(y, y′)u(y′) dy′ , a.e. y ∈ Y ,

(17)
defines a linear and bounded operator from L1(Y, ydy) into itself according to
(10)-(12) and that

∫ ∞

y0

ϕ(y)L[u](y) dy = −
∫ ∞

y0

ϕ(y)µ(y)u(y) dy

+

∫ ∞

y0

u(y)β(y)

(

−ϕ(y) + 2

∫ y

y0

ϕ(y′)κ(y′, y) dy′

)

dy

(18)

for u ∈ L1(Y, ydy) and a suitable test function ϕ. We then put

E0 := L1(Y, ydy) and E1 := W̊1
1(Y, ydy) := clW 1

1
(Y,ydy)D(Y ) ,

where D(Y ) denotes the space of all test functions on Y . By E+
0 we mean the

positive cone in E0 and E+
1 := E1 ∩ E+

0 . Finally, given any interval J and any
function v : J → R

+, we define

Av(t)u := τ v(t) ∂yu − L[u] , u ∈ E1 , t ∈ J . (19)

Lemma 2.1. The operator −A, defined as

Aϕ := ∂yϕ , ϕ ∈ E1 , (20)

generates a strongly continuous semigroup {e−tA ; t ≥ 0} on E0. It is given by

[e−tAϕ](y) =

{

ϕ(y − t) , y > y0 + t ,
0 , y0 < y ≤ y0 + t ,

t ≥ 0 , (21)

and satisfies
∥

∥e−tA
∥

∥

L(E0)
≤ et/y0 , t ≥ 0 . (22)
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Proof. Clearly, (21) defines a strongly continuous semigroup on E0 satisfying

∥

∥e−tAϕ
∥

∥

E0
≤

(

1 +
t

y0

)

‖ϕ‖E0
≤ et/y0‖ϕ‖E0

, t ≥ 0 ,

for ϕ ∈ E0, whence (22). It thus remains to show that its generator −A is indeed
given by (20). Note that Lebesgue’s theorem guarantees that the test functions are
contained in the domain of A and that

Aϕ = ∂yϕ , ϕ ∈ D(Y ) . (23)

Since (21) is a right translation, D(Y ) is invariant under e−tA and therefore is a
core for A. In particular, D(Y ) is dense in the domain of A, which, together with
(23), easily yields (20). �

In the sequel, we set JT := [0, T ] for T > 0 and, given R > 1, we define

VT,R :=
{

v ∈ C1(JT ) ; R−1 ≤ v(t) ≤ ‖v‖C1(JT ) ≤ R
}

. (24)

Recall then that the operator Av(t) has been defined in (19).

Proposition 2.2. Fix R > 1, T0 > 0 and let 0 < T ≤ T0. Then
(

− Av(t)
)

t∈[0,T ]

generates for each v ∈ VT,R a unique evolution system Uv(t, s), 0 ≤ s ≤ t ≤ T , in
E0, and there exists a constant ω0 := ω0(T0, R) > 0 such that

‖Uv(t, s)‖L(E0) ≤ eω0(t−s) , 0 ≤ s ≤ t ≤ T , v ∈ VT,R , (25)

and

‖Uv(t, s)‖L(E1) ≤ ω0 , 0 ≤ s ≤ t ≤ T , v ∈ VT,R . (26)

Moreover, for v, w ∈ VT,R, it holds that

‖Uv(t, s) − Uw(t, s)‖L(E1,E0) ≤ ω0 (t − s) ‖v − w‖C(JT ) , 0 ≤ s ≤ t ≤ T . (27)

Proof. Since L is a bounded operator on E0, Lemma 2.1 and a well-known per-
turbation result (see [9, Thm.3.1.1]) ensure that, for any fixed v ∈ VT,R and any
s ∈ JT , −Av(s) generates a strongly continuous semigroup on E0 with

‖e−tAv(s)‖L(E0) ≤ eω̄t , t ≥ 0 , (28)

where ω̄ := τRy−1
0 +‖L‖L(E0). Hence, putting ω := ω̄+1 it follows that

{

Av(t)
}

t∈JT

is stable in the sense of [9, §5.2] for each v ∈ VT,R. Next, given any t ∈ JT , the
definition Qv(t) := ω + Av(t) yields an isomorphism from E1 onto E0 satisfying

‖Qv(t)‖L(E1,E0) ≤ ω + τR + ‖L‖L(E0) , t ∈ JT , v ∈ VT,R . (29)

Moreover, for u ∈ E1,

Qv(·)u ∈ C1(JT , E0) with Q̇v(t)u :=
d

dt
Qv(t)u = τ v̇(t) ∂yu .

Therefore, assumptions (H1), (H2)
+, (H3) of [9, §5] hold, thus implying that there

indeed exists a unique evolution system Uv(t, s), 0 ≤ s ≤ t ≤ T , in E0 for each
v ∈ VT,R, which, in addition, satisfies statements (E1)−(E5) of [9, §5]. In particular,
(25) holds (with ω0 replaced by ω̄).
We now refer to the proof of [9, Thm.5.4.6]: The evolution system Uv(t, s) can be
written as

Uv(t, s) = Qv(t)−1 Wv(t, s)Qv(s) , 0 ≤ s ≤ t ≤ T , (30)
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where Wv(t, s) ∈ L(E0) satisfies

Wv(t, s)u = Uv(t, s)u +

∫ t

s

Wv(t, r)Cv(r)Uv(r, s)u dr

for 0 ≤ s ≤ t ≤ T and u ∈ E0 with

Cv(t) := Q̇v(t)Qv(t)−1 ∈ L(E0) , t ∈ JT .

We then claim that there is a constant c0(R) > 0 such that

‖Qv(t)−1‖L(E0,E1) ≤ c0(R) , t ∈ JT , v ∈ VT,R . (31)

Indeed, (28) implies

‖Qv(t)−1‖L(E0) ≤ 1 , t ∈ JT ,

and therefore, for u ∈ E0 and t ∈ JT ,

‖Qv(t)−1 u‖E1
= ‖Qv(t)−1 u‖E0

+ ‖∂yQv(t)−1 u‖E0

≤ ‖u‖E0
+

1

τv(t)
‖u − (ω − L)Qv(t)−1 u‖E0

≤
(

1 + R/τ (1 + ω + ‖L‖L(E0))
)

‖u‖E0
,

whence (31). Consequently, we have

‖Cv(t)‖L(E0) ≤ ‖Q̇v(t)‖L(E1,E0) ‖Qv(t)−1‖L(E0,E1)

≤ τ ‖v̇‖C(JT ) c0(R) ≤ c′0(R)

for t ∈ JT and v ∈ VT,R. From the proof of [9, Lem.5.4.5] (see in particular
equation (4.11) therein) and from (25) it thus follows that there exists a constant
c(T0, R) > 0 such that

‖Wv(t, s)‖L(E0) ≤ c(T0, R) , 0 ≤ s ≤ t ≤ T , v ∈ VT,R . (32)

Applying estimates (29), (31), and (32) to (30) we conclude that (26) is true.
Finally, let v, w ∈ VT,R and u ∈ E1 be arbitrary. Then, for 0 ≤ s < t ≤ T ,

N := [σ 7→ Uv(t, σ)Uw(σ, s)u] ∈ C1((s, t), E0) ∩ C([s, t], E1)

by (E2) − (E5) in [9, §5] with

Ṅ(σ) = Uv(t, σ)
(

Av(σ) − Aw(σ)
)

Uw(σ, s)u .

Therefore, (25) and (26) yield

‖Uw(t,s)u − Uv(t, s)u‖E0

≤
∫ t

s

‖Uv(t, σ)‖L(E0) ‖Av(σ) − Aw(σ)‖L(E1,E0) ‖Uw(σ, s)‖L(E1) dσ ‖u‖E1

≤ c(T0, R) (t − s) ‖v − w‖C(JT ) ‖u‖E1

for 0 ≤ s ≤ t ≤ T , hence statement (27). �

Remark 2.3. As observed in the previous proof, the evolution system Uv(t, s),
0 ≤ s ≤ t ≤ T , corresponding to v ∈ VT,R satisfies (E1) − (E5) in [9, §5]. In
particular, we have for u0 ∈ E1 that

[

t 7→ Uv(t, 0)u0
]

∈ C1(JT , E0) ∩ C(JT , E1) .

The existence of weak solutions will require the following auxiliary result.
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Lemma 2.4. For v ∈ C(JT ) with v(t) ≥ 0 put Av(t) := τv(t)∂y , t ∈ JT , and let
UAv

(t, s), 0 ≤ s ≤ t ≤ T , be the corresponding evolution system in L1(Y ). Then,
for any δ > 0, it holds that

sup
|E|≤δ

∫

E

UAv
(t, s)ϕ dy ≤ sup

|E|≤δ

∫

E

ϕ dy , 0 ≤ s ≤ t ≤ T , ϕ ∈ L+
1 (Y ) ,

the supremum being taken over all measurable sets E ⊂ Y .

Proof. Noticing that −∂y with domain W̊1
1(Y ) generates a strongly continuous

positive semigroup of contractions on L1(Y ) given as in (21), it follows that

‖e−tAv(s)‖L(L1(Y )) ≤ 1 , ‖e−tAv(s)‖L(W̊1
1
(Y )) ≤ 1 , t ≥ 0 , s ∈ JT .

Hence, the corresponding evolution system UAv
(t, s), 0 ≤ s ≤ t ≤ T , in L1(Y )

is well-defined according to [9, Thm.5.2.2, Thm.5.3.1]. Let then E ⊂ Y be any
measurable subset of Y with measure |E| ≤ δ and choose ϕ ∈ L+

1 (Y ). Denoting by
χS the characteristic function on a set S, we have

∫

E

[e−tAv(s) ϕ](y) dy =

∫ ∞

y0

χ{−tτv(s)+E}(y)ϕ(y) dy ≤ sup
|E′|≤δ

∫

E′

ϕ(y) dy

for s ∈ JT and t ≥ 0. From equations (3.5) and (3.15) in [9, §5] we thus deduce
∫

E

UAv
(t, s)ϕ dy ≤ sup

|E′|≤δ

∫

E′

ϕ dy , 0 ≤ s ≤ t ≤ T ,

and the assertion follows. �

3. Classical Solutions

In this section we show that problem (1)-(4) is globally well-posed for bounded
kernels µ and β. In order to do this, let us denote by | · |1 the norm in L1(Y ) and
put

g(u) := 2

∫ ∞

y0

u(y)β(y)

∫ y0

0

y′ κ(y′, y) dy′ dy .

Defining L by (17) and Av(t) by (19), we may rewrite (1)-(4) as

v̇ = λ − γ v − τ v |u|1 + g(u) , t > 0 , v(0) = v0 , (33)

provided u ≥ 0, and

u̇ + Av(t)u = 0 , t > 0 , u(0) = u0 . (34)

Theorem 3.1. Suppose (10)-(13) hold. Then, given any v0 > 0 and u0 ∈ E+
1 ,

problem (33), (34) possesses a unique global classical solution (v, u) such that
v ∈ C1(R+), v(t) > 0 for t > 0, and u ∈ C1(R+, E0) ∩ C(R+, E+

1 ).

Proof. (i) We first prove that, for any S > 0, there exists T := T (S) ∈ (0, 1] such
that (33), (34) possesses a unique solution (v, u) on JT with regularity properties
as stated in the theorem, provided that (v0, u0) ∈ R

+ × E+
1 satisfy

S−1 ≤ v0 and v0 + ‖u0‖E1
≤ S . (35)

In the following, we denote by c(S) > 0 a generic constant depending on S but not
on T ∈ (0, 1]. Let us then define the complete metric space

XT :=
{

u ∈ C(JT , E+
0 ) ; ‖u(t)‖E0

≤ S + 1 , t ∈ JT

}

,
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and let us choose ū ∈ XT arbitrarily. Then, since g(ū), |ū|1 ∈ C(JT ) due to (12),
it follows that (33), with u replaced by ū, admits a unique solution vū ∈ C1(JT ).
Clearly,

vū(t) = e−γt−τ
R

t

0
|ū(σ)|1dσ v0

+

∫ t

0

e−γ(t−s)−τ
R

t

s
|ū(σ)|1dσ

(

λ + g(ū(s))
)

ds

for t ∈ JT , hence

vū(t) ≥ e−γt−τ/y0(S+1)t v0 ≥ c(S) , 0 ≤ t ≤ T ≤ 1 . (36)

Moreover, since v0 ≤ S and g(ū(t)) ≤ ‖β‖∞(S + 1) for t ∈ JT , we deduce

vū(t) ≤ c(S) , t ∈ JT , (37)

from which it follows

−c(S) ≤ −
(

γ + τ |ū(t)|1
)

vū(t) ≤ v̇ū(t) ≤ λ + g(ū(t)) ≤ c(S) , t ∈ JT . (38)

Therefore, (36)-(38) entail the existence of R := R(S) > 1, depending on S > 0
but not on T ∈ (0, 1], such that vū ∈ VT,R whenever ū ∈ XT , where VT,R is given
by (24). Furthermore, we readily derive from the explicit representation of vū and
the linearity of g that

|vū1
(t) − vū2

(t)| ≤ c(S) ‖ū1 − ū2‖XT
, 0 ≤ t ≤ T ≤ 1 , ū1 , ū2 ∈ XT . (39)

Let Uvū
(t, s), 0 ≤ s ≤ t ≤ T , denote the unique evolution system in E0 cor-

responding to
{

Avū
(t)

}

t∈JT
and by ω0 = ω0(1, R(S)) the constant occurring in

Proposition 2.2. Defining

Λ(ū)(t) := Uvū
(t, 0)u0 , t ∈ JT , ū ∈ XT ,

we obtain by Remark 2.3 the unique solution in C(JT , E1) ∩ C1(JT , E0) to

u̇ + Avū
(t)u = 0 , t > 0 , u(0) = u0 .

Next we show that Λ : XT → XT is a contraction, which, consequently, would
imply our first claim. Provided T := T (S) ∈ (0, 1] is chosen sufficiently small, we
deduce from (25) that, for ū ∈ XT and t ∈ JT ,

‖Λ(ū)(t)‖E0
≤ eω0T ‖u0‖E0

≤ S + 1 ,

and (27) and (39) ensure for ū1, ū2 ∈ XT and t ∈ JT

‖Λ(ū1)(t) − Λ(ū2)(t)‖E0
≤ ω0 T ‖vū1

− vū2
‖C(JT ) ‖u0‖E1

≤ 1

2
‖ū1 − ū2‖XT

.

In order to prove that Λ(ū)(t) is non-negative observe that Λ(ū) also solves

u̇ +
(

Avū
(t) + r

)

u = L[u] + r u =: B(u) , t > 0 , u(0) = u0 ,

with r := ‖µ + β‖∞ and Avū
(t) := τvū(t)∂y. Then B(u) ∈ E+

0 for u ∈ E+
0 . Since

Lemma 2.1 ensures that −Avū
(s) generates a positive semigroup on E0, it readily

follows from the proof of [9, Thm.5.3.1] that the evolution system Ū(t, s) generated
by

{

Avū
(t) + r

}

t∈JT
is positive. Defining then

F (w)(t) := Ū(t, 0)u0 +

∫ t

0

Ū(t, s)B(w(s)) ds
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one shows that F is a contraction from a suitable closed ball in C([0, T̃ ], E0), con-

taining u0, into itself provided T̃ ∈ (0, T ] is sufficiently small. Hence, putting

u0 := u0 , un+1 := F (un) , n ∈ N ,

we obtain a sequence in C([0, T̃ ], E+
0 ) that converges to Λ(ū)|[0,T̃ ]. This shows that

T ⋆ := sup{T ′ ∈ (0, T ] ; Λ(ū)(t) ∈ E+
0 , 0 ≤ t ≤ T ′} ≥ T̃ .

Assuming T ⋆ < T , a repetition of the above arguments with u0 replaced by
Λ(ū)(T ⋆) ∈ E+

1 would lead to a contradiction. Thus T ⋆ = T , which entails that
Λ : XT → XT is indeed a contraction.

(ii) It follows from part (i) that (33), (34) admits a unique maximal solution

(v, u) ∈ C(J, R+ × E+
1 ) ∩ C1(J, R × E0) ,

where J is open in R
+. We claim that, if t+ := supJ < ∞, then

lim
tրt+

v(t) = 0 or lim
tրt+

(

v(t) + ‖u(t)‖E1

)

= ∞ . (40)

For, suppose to the contrary that there are tj ր t+ < ∞ and S > 0 such that

v(tj) ≥ S−1 and v(tj) + ‖u(tj)‖E1
≤ S .

Let T (S) > 0 be the corresponding constant from part (i) and fix tN > t+ − T (S).
Then we may choose

(

v(tN ), u(tN )
)

∈ R
+ \ {0} × E+

1 as initial value and deduce
that the solution (v, u) can be extended to a solution on [0, tN + T (S)], contradict-
ing its maximality.

(iii) We now show that (40) does not occur in finite time. Observe that (12) and
(18) imply

v̇(t) +
d

dt

∫ ∞

y0

y u(t, y) dy = λ − γ v(t) −
∫ ∞

y0

y µ(y)u(t, y) dy , t ∈ J , (41)

hence
v(t) + ‖u(t)‖E0

≤ v0 + ‖u0‖E0
+ λ t , t ∈ J . (42)

Suppose now that t+ < ∞. Then (42) entails that

v̇(t) ≤ λ + g(u(t)) ≤ λ + ‖β‖∞ ‖u(t)‖E0
≤ c(t+) , t ∈ J ,

and
v̇(t) ≥ − γ v(t) − τ |u(t)|1 v(t) ≥ − c(t+) , t ∈ J .

Therefore
‖v‖C1(J) ≤ c(t+) (43)

and
v(t) ≥ e−(γ+τ |u(t)|1)t v0 ≥ e−(γ+τc(t+))t+ v0 > 0 , t ∈ J . (44)

Taking (26) into account, we derive from (43), (44) that the evolution system
Uv(t, s) satisfies

‖Uv(t, s)‖L(E1) ≤ c(t+) , 0 ≤ s ≤ t < t+ .

But then
‖u(t)‖E1

= ‖Uv(t, 0)u0‖E1
≤ c(t+) ‖u0‖E1

, t ∈ J , (45)

thus (40) cannot be true in view of (43) - (45). This contradiction proves that the
solution (v, u) exists for all times, hence the assertion follows. �
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If (v, u) denotes the solution to (1)-(4) provided by Theorem 3.1, the next propo-
sition shows that u propagates with finite speed. The proof is adapted from the
proof of [6, Thm.2.6].

Proposition 3.2. Suppose (10)-(13) hold. For v0 > 0 and u0 ∈ E+
1 let (v, u)

denote the unique global classical solution to (1)-(4). If suppu0 ⊂ [y0, S0] for some
S0 > y0, then suppu(t) ⊂ [y0, S(t)], t ≥ 0, where

S(t) := S0 + τ

∫ t

0

v(s) ds , t ≥ 0 .

Proof. Define P ∈ C1(R+, L1(Y )) by

P (t, y) :=

∫ ∞

y

u(t, y′) dy′ , y ∈ Y , t ≥ 0 .

Then, since

d

dt
P (t, y) =

∫ ∞

y

u̇(t, y′) dy′ = τ v(t)u(t, y) +

∫ ∞

y

L[u(t)](y′) dy′ ,

we derive from (2) and (14)

d

dt

∫ ∞

S(t)

P (t, y) dy =

∫ ∞

S(t)

d

dt
P (t, y) dy − S′(t)P (t, S(t))

=

∫ ∞

S(t)

∫ ∞

y

L[u(t)](y′) dy′ dy

≤ 2

∫ ∞

S(t)

∫ ∞

y

∫ ∞

y′

β(y′′)κ(y′, y′′)u(t, y′′) dy′′ dy′ dy

= 2

∫ ∞

S(t)

∫ ∞

y

β(y′′)u(t, y′′)

∫ y′′

y

κ(y′, y′′) dy′ dy′′ dy

≤ 2 ‖β‖∞
∫ ∞

S(t)

P (t, y) dy ,

which implies
∫ ∞

S(t)

P (t, y) dy ≤ e2‖β‖∞t

∫ ∞

S0

∫ ∞

y

u0(y′) dy′ dy = 0 , t ≥ 0 .

Hence u(t, y) = 0 for y ∈ (S(t),∞) and t ≥ 0. �

Remark 3.3. Note that if µ(y) ≥ µ > 0 for a.e. y ∈ Y and γ > 0, then (41)
entails

v(t) +

∫ ∞

y0

y u(t, y) dy ≤ λ

ν
+ e−νt

(

v0 + ‖u0‖E0
− λ

ν

)

, t ≥ 0 , (46)

where ν := min{µ, γ} > 0. In particular,

∫ t

0

v(s) ds ≤ λ t

ν
+

1

ν

(

1 − e−νt
)

(

v0 + ‖u0‖E0
− λ

ν

)

, t ≥ 0 . (47)
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4. Weak Solutions

The aim of this section is to relax condition (10) and to prove existence of weak
solutions for unbounded kernels µ and β. More precisely, instead of (10) we assume
in the following that

{

there exists α ≥ 1 and ̺ ∈ L+
∞(Y ) such that

̺(y) → 0 as y → ∞ and µ(y) + β(y) ≤ ̺(y)yα, a.e. y ∈ Y .
(48)

In addition, we require that










for each ε > 0 there exists δ > 0 such that

sup
|E|≤δ

β(y)

yα

∫ y

y0

χE(y′)κ(y′, y) dy′ ≤ ε , a.e. y ∈ Y ,
(49)

the supremum being taken over all measurable subsets E in Y with measure |E| ≤ δ.
Observe that if κ is subject to the self-similar form (15), (16), then

lim
|E|→0

ess-sup
y>y0

∫ y

y0

1E(y′)κ(y′, y) dy′ = lim
|E|→0

ess-sup
y>y0

∫ 1

y0/y

1 1
y
E(y′)κ0(y

′) dy′ = 0

due to y0 > 0 and the integrability of κ0, so (49) automatically holds by (48).
In the following we denote by L1,w(Y ) the space L1(Y ) equipped with its weak
topology.

Definition 4.1. Given v0 > 0 and u0 ∈ L+
1 (Y, ydy), we call (v, u) a (global) weak

solution to (1)-(4) if

(i) g(u) ∈ C(R+),
(ii) v ∈ C1(R+) is a non-negative solution to (1),
(iii) u ∈ C(R+, L1,w(Y )) ∩ L∞,loc(R

+, L+
1 (Y, ydy)),

(iv) for all t > 0 and ϕ ∈ W 1
∞(Y ) it holds that L[u] ∈ L1((0, t) × Y ) and

∫ ∞

y0

ϕ(y)u(t, y) dy − τ

∫ t

0

v(s)

∫ ∞

y0

ϕ′(y)u(s, y) dy ds

=

∫ ∞

y0

ϕ(y)u0(y) dy +

∫ t

0

∫ ∞

y0

ϕ(y)L[u(s)](y) dy ds .

We first need the following auxiliary result.

Lemma 4.2. Suppose that hn and h are measurable functions on Y such that
hn → h a.e. and let un → u in L+

1,w(Y ).

(i) If ‖hn‖∞ ≤ c, then hnun → hu in L1,w(Y ).
(ii) If ̺ and α are as in (48) and if |hn(y)| ≤ ̺(y)yα for a.e. y ∈ Y and

∫ ∞

y0

yα un(y) dy ≤ c , n ∈ N ,

then hnun → hu in L1,w(Y ).

Proof. In case that Y is a finite interval, a proof of (i) is implicitly contained in [11,
Lem.4.1] (a detailed proof can also be found in [13, App.]). The case of unbounded
Y is a slight modification thereof. Statement (ii) can be shown along the lines of
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[7, App.A, Cor.4.1]. Nevertheless, for the reader’s convenience, we include here a
proof. First note that the assumptions imply |h(y)| ≤ ̺(y)yα, a.e. y ∈ Y , and

∫ ∞

y0

yα u(y) dy ≤ c .

Putting ūn(y) := ̺(y)yαun(y) and ū(y) := ̺(y)yαu(y) we obtain for ϕ ∈ L∞(Y )
and R > y0

∣

∣

∣

∫ ∞

y0

ϕ(y)
(

ūn(y) − ū(y)
)

dy
∣

∣

∣
≤

∣

∣

∣

∫ R

y0

ϕ(y) ̺(y) yα
(

un(y) − u(y)
)

dy
∣

∣

∣

+ 2 c ‖ϕ‖∞ ‖̺‖L∞(R,∞) .

Taking first the lim sup as n → ∞ on both sides and letting then R → ∞, we
conclude from (48) that ūn → ū in L1,w(Y ). Therefore, it follows from (i) that the
right hand side of the estimate

∣

∣

∣

∫ ∞

y0

ϕ(y)
(

hn(y) un(y) − h(y)u(y)
)

dy
∣

∣

∣

≤
∣

∣

∣

∫ ∞

y0

ϕ(y)
(

̺(y) yα
)−1 (

hn(y) − h(y)
)

ūn(y) dy
∣

∣

∣

+
∣

∣

∣

∫ ∞

y0

ϕ(y)
(

̺(y) yα
)−1

h(y)
(

ūn(y) − ū(y)
)

dy
∣

∣

∣

converges to 0, leading to the assertion. �

Now we are in a position to relax the boundedness assumptions on µ and β and
also the assumption on u0 can be weakened.

Theorem 4.3. Suppose that (11)-(13) and (48), (49) hold. Then, given any v0 > 0
and u0 ∈ L+

1 (Y, yαdy), problem (1)-(4) admits at least one global weak solution
(v, u). In addition, u belongs to L∞,loc(R

+, L1(Y, yαdy)).

Proof. (i) Let u0
n ∈ D+(Y ) be such that u0

n → u0 in L1(Y, yαdy). We define
µn := min{µ, n} and βn := min{β, n}. Observe that µn, βn also satisfy (48) and
(49). Then Theorem 3.1 guarantees the existence of

(vn, un) ∈ C(R+, R+ × E+
1 ) ∩ C1(R+, R × E0)

satisfying

v̇n = λ − γ vn − τ vn |un|1 + gn(un) , t > 0 , vn(0) = v0 , (50)

and
∂tun + τ vn(t) ∂yun = Ln[un] , t > 0 , un(0) = u0

n , (51)

where

gn(u) := 2

∫ ∞

y0

u(y)βn(y)

∫ y0

0

y′ κ(y′, y) dy′ dy

and

Ln[u](y) := −
(

µn(y) + βn(y)
)

u(y) + 2

∫ ∞

y

βn(y′)κ(y, y′)u(y′) dy′ .

Let T > 0 be arbitrary. According to (42) there exists c0(T ) > 0 independent of
n ≥ 1 such that

vn(t) + ‖un(t)‖E0
≤ c0(T ) , t ∈ JT , n ≥ 1 . (52)
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Moreover, we claim that

‖un(t)‖L1(Y,yαdy) ≤ c0(T ) , t ∈ JT , n ≥ 1 . (53)

For, recall that un(t) has compact support due to Proposition 3.2. Hence, we may
test (51) by yα and obtain

d

dt

∫ ∞

y0

yα un(t, y) dy = α τ vn(t)

∫ ∞

y0

yα−1 un(t, y) dy

−
∫ ∞

y0

yα
(

µn(y) + βn(y)
)

un(t, y) dy

+ 2

∫ ∞

y0

un(t, y)βn(y)

∫ y

y0

(y′)α κ(y′, y) dy′ dy

≤ α τ vn(t)

∫ ∞

y0

yα−1 un(t, y) dy

for t ≥ 0, since (12) ensures

2

∫ y

y0

(y′)α κ(y′, y) dy′ ≤ yα , a.e. y > y0 .

Therefore, Gronwall’s inequality and estimate (52) yield (53). In particular, com-
bining (53), (48) and (14) we deduce

gn(un(t)) ≤ 2 y0 ‖̺‖∞ ‖un(t)‖L1(Y,yαdy) ≤ c(T ) , t ∈ JT , n ≥ 1 .

(ii) It follows from (1) and the estimate on gn(un(t)) that

|vn(t) − vn(s)| ≤ c(T ) |t − s| , t, s ∈ JT , n ≥ 1 ,

where c(T ) > 0 is independent of n ≥ 1. Taking (52) into account, the Arzelà-
Ascoli theorem warrants that the sequence (vn) is relatively compact in C(JT ).

(iii) We show that (un) is relatively sequentially compact in C(JT , L1,w(Y )). Ac-
cording to a variant of the Arzelà-Ascoli theorem (see [12, Thm.1.3.2]) we merely
have to check that the set {un(t) ; n ≥ 1} is relatively compact in L1,w(Y ) for every
t ∈ JT and that the set {un ; n ≥ 1} is equicontinuous in L1,w(Y ) at every t ∈ JT .
First observe that (52) entails

lim
R→∞

sup
n≥1
t∈JT

∫ ∞

R

un(t, y) dy = 0 . (54)

Let Uvn
(t, s) denote the evolution system in L1(Y ) corresponding to the operator

Avn
(t) := τvn(t)∂y. Then

un(t) = Uvn
(t, 0)u0

n +

∫ t

0

Uvn
(t, s)Ln[un(s)] ds , t ∈ JT .

Consequently, given δ > 0, Lemma 2.4 and the positivity of un(t) imply that

sup
|E|≤δ

∫

E

un(t, y) dy ≤ sup
|E|≤δ

∫

E

u0
n(y) dy

+ 2

∫ t

0

sup
|E|≤δ

∫ ∞

y0

un(s, y)βn(y)

∫ y

y0

χE(y′)κ(y′, y) dy′ dy ds .
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Since u0
n → u0 in L1(Y, yαdy) and in view of (49) and (53), we conclude that

lim
|E|→0

sup
n≥1
t∈JT

∫

E

un(t, y) dy = 0 . (55)

From (52), (54), (55) and the Dunford-Pettis theorem (cf. [2, Thm.4.21.2]) we
hence derive that {un(t) ; t ∈ JT , n ≥ 1} is relatively compact in L1,w(Y ).
Now let ϕ ∈ D(Y ) be arbitrary. Testing (51) by ϕ, we infer

∣

∣

∣

∫ ∞

y0

ϕ(y) [un(t,y) − un(s, y)] dy
∣

∣

∣

≤ τ

∫ t

s

vn(σ)

∫ ∞

y0

|ϕ′(y)|un(σ, y) dy dσ

+

∫ t

s

∫ ∞

y0

|ϕ(y)|
(

µn(y) + βn(y)
)

un(σ, y) dy dσ

+ 2

∫ t

s

∫ ∞

y0

un(σ, y)βn(y)

∫ y

y0

|ϕ(y′)|κ(y′, y) dy′ dy dσ

for 0 ≤ s ≤ t ≤ T , whence, from (14), (48), (52) and (53),
∣

∣

∣

∫ ∞

y0

ϕ(y)[un(t, y) − un(s, y)] dy
∣

∣

∣
≤ c(T, ϕ) |t − s| , t, s ∈ JT . (56)

For ϕ ∈ L∞(Y ) let ϕj ∈ D(Y ) be such that ϕj → ϕ a.e. and ‖ϕj‖∞ ≤ ‖ϕ‖∞ (see [1,
p.131f]). Given ε > 0 it follows from (54), from the fact that {un(t) ; t ∈ JT , n ≥ 1}
is relatively compact in L1,w(Y ), and from Egorov’s theorem that there are R > y0,
a measurable subset E of (y0, R) and j ∈ N such that

∫ ∞

R

un(t, y) dy +

∫

E

un(t, y) dy ≤ ε

12 ‖ϕ‖∞
, t ∈ JT , n ≥ 1 ,

and

‖ϕ − ϕj‖L∞((y0,R)\E) ≤ ε

6 c0(T )
,

where c0(T ) > 0 stems from (52). Therefore, (56) yields
∣

∣

∣

∫ ∞

y0

ϕ(y) [un(t, y) − un(s, y)] dy
∣

∣

∣
≤ ‖ϕ − ϕj‖L∞((y0,R)\E)

(

|un(t)|1 + |un(s)|1
)

+
(

‖ϕ‖∞ + ‖ϕj‖∞
)

∫

E

(

un(t, y) + un(s, y)
)

dy

+
(

‖ϕ‖∞ + ‖ϕj‖∞
)

∫ ∞

R

(

un(t, y) + un(s, y)
)

dy

+ c(T, ϕj) |t − s|
≤ ε + c(T, ϕj) |t − s|

for t, s ∈ JT and n ≥ 1. We conclude

lim
s→t

sup
n≥1

∣

∣

∣

∫ ∞

y0

ϕ(y) [un(t, y) − un(s, y)] dy
∣

∣

∣
= 0 ,

hence {un ; n ≥ 1} is equicontinuous in L1,w(Y ) at every t ∈ JT .
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(iv) Since now (vn, un) is relatively weakly compact in C(JT , R × L1,w(Y )) for
each T > 0, we may choose a subsequence (again denoted by ((vn, un))n∈N) and a
function (v, u) ∈ C(R+, R × L1,w(Y )) such that

(vn, un) → (v, u) in C(JT , R × L1,w(Y )) (57)

for each T > 0.

(v) We then claim that (v, u) is a weak solution to (1)-(4). Evidently, it holds that
(v(t), u(t)) ∈ R

+ × L+
1 (Y ) for t > 0 since (vn(t), un(t)) ∈ R

+×L+
1 (Y ). We fix again

T > 0. Then (57) and (53) imply

‖u(t)‖L1(Y,yαdy) ≤ c0(T ) , t ∈ JT , (58)

in particular, we have u ∈ L∞,loc(R
+L1(Y, yαdy)). Let ϕ ∈ W 1

∞(Y ) be arbitrary.
Clearly, (57) yields

lim
n→∞

∫ ∞

y0

ϕ(y)un(t, y) dy =

∫ ∞

y0

ϕ(y)u(t, y) dy , t ∈ JT . (59)

Moreover, writing

∣

∣

∣

∫ t

0

v(s)

∫ ∞

y0

ϕ′(y)u(s, y) dy ds −
∫ t

0

vn(s)

∫ ∞

y0

ϕ′(y)un(s, y) dy ds
∣

∣

∣

≤
∫ t

0

|v(s) − vn(s)|
∫ ∞

y0

|ϕ′(y)|u(s, y) dy ds

+

∫ t

0

vn(s)
∣

∣

∣

∫ ∞

y0

ϕ′(y) [u(s, y) − un(s, y)] dy
∣

∣

∣
ds

for t ∈ JT , we infer from (57), (52) and Lebesgue’s theorem that, for t ∈ JT ,

lim
n→∞

∫ t

0

vn(s)

∫ ∞

y0

ϕ′(y)un(s, y) dy ds =

∫ t

0

v(s)

∫ ∞

y0

ϕ′(y)u(s, y) dy ds . (60)

In addition, since µn(y) + βn(y) ≤ ̺(y)yα for a.e. y ∈ Y , we conclude from
Lemma 4.2(ii), (53), (57) and Lebesgue’s theorem that

lim
n→∞

∫ t

0

∫ ∞

y0

ϕ(y)
(

µn(y)+ βn(y)
)

un(s, y) dy ds

=

∫ t

0

∫ ∞

y0

ϕ(y)
(

µ(y) + β(y)
)

u(s, y) dy ds

as well as

lim
n→∞

∫ t

0

∫ ∞

y0

ϕ(y)

∫ ∞

y

un(s, y′)βn(y′)κ(y, y′) dy′ dy ds

=

∫ t

0

∫ ∞

y0

ϕ(y)

∫ ∞

y

u(s, y′)β(y′)κ(y, y′) dy′ dy ds ,

where we use Fubini’s theorem for the second limit. Therefore,

lim
n→∞

∫ t

0

∫ ∞

y0

ϕ(y)Ln[un(s)] dy ds =

∫ t

0

∫ ∞

y0

ϕ(y)L[u(s)] dy ds . (61)
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Now, since (vn, un) is a weak solution to (1)-(4), we derive from (59)-(61) that u
indeed satisfies part (iv) of Definition 4.1. Next, it follows from Lemma 4.2(ii),
similarly as above, that

lim
n→∞

gn(un(t)) = g(u(t)) , t ∈ JT ,

and also

lim
n→∞

∫ t

0

|un(s)|1 ds =

∫ t

0

|u(s)|1 ds , t ∈ JT .

Consequently, (50) yields

v(t) = e−γt−τ
R

t

0
|u(σ)|1dσ v0

+

∫ t

0

e−γ(t−s)−τ
R

t

s
|u(σ)|1dσ

(

λ + g(u(s))
)

ds

for t ∈ JT . But since u ∈ C(R+, L1,w(Y )), Lemma 4.2(ii) and (58) warrant that
g(u) ∈ C(JT ). In addition, |u|1 ∈ C(JT ), so we deduce that v ∈ C1(JT ) solves (1).
This proves the theorem. �

Also the weak solution propagates with finite speed as shown in the next corol-
lary.

Corollary 4.4. Suppose (11)-(13), (48), (49). If v0 > 0 and if u0 ∈ L+
1 (Y, yαdy) is

such that suppu0 ⊂ [y0, S0], then the weak solution (v, u) provided by Theorem 4.3
satisfies suppu(t) ⊂ [y0, S(t)] for t ≥ 0, where

S(t) := S0 + τ

∫ t

0

v(s) ds , t ≥ 0 .

Proof. We may choose the sequence (u0
n) ⊂ D+(Y ) in the proof of Theorem 4.3

such that suppu0
n ⊂ (y0, S0). Then Proposition 3.2 ensures that the approximating

sequence ((vn, un))n∈N given in (50), (51) satisfies suppun(t) ⊂ [y0, Sn(t)] for t ≥ 0,
where

Sn(t) := S0 + τ

∫ t

0

vn(s) ds , t ≥ 0 , n ≥ 1.

Evidently, limn→∞ Sn(t) = S(t) and

∫ ∞

S(t)

u(t, y) dy = lim
n→∞

∫ ∞

Sn(t)

un(t, y) dy = 0

by (57) and Lemma 4.2(i), thus suppu(t) ⊂ [y0, S(t)] for t ≥ 0. �

Remark 4.5. In addition to (11)-(13), (48), (49) suppose that µ(y) ≥ µ > 0 for
a.e. y ∈ Y and that γ > 0. Then the weak solution (v, u) also satisfies the estimates
(46) and (47). Indeed, (46) follows immediately from the corresponding estimate
for (vn, un) and (57).
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5. Stability of the Disease Free Steady State

This section is devoted to the investigation of stability properties of the disease-
free steady state (v, u) = (λ/γ, 0) of (1),(2).

In the sequel, we always assume that (11)-(13) are satisfied with γ > 0 and that
either

{

(10) holds ,

v0 > 0 , u0 ∈ E+
1 ,

(62)

or
{

(48), (49) hold ,

v0 > 0 , u0 ∈ L+
1 (Y, yαdy) .

(63)

Then we denote by (v, u) either the classical solution provided by Theorem 3.1 if
(62) holds, or the weak solution provided by Theorem 4.3 if (63) holds.
We assume that

d0 := ess-sup
y∈Y

β(y)

yµ(y)
∈ (0,∞)

and introduce εk, δk such that

0 ≤ δk ≤ β(y)

∫ y0

0

(y′)k κ(y′, y) dy′ ≤ εk , a.e. y ∈ Y ,

for k = 0, 1, assuming at least ε1 to be finite. In the following we suppose that

µ := ess-inf
y∈Y

µ(y) > 0 (64)

and

1

2d0
(µ + 2 δ0) >

τλ

2γ
+ ε1 − 2 δ1 +

2d0δ1(ε1 − δ1)

µ + 2δ0
. (65)

Given the assumptions above we can construct a Lyapunov function as follows.

Lemma 5.1. Suppose (62) or (63) and that (64) and (65) are satisfied. Then
there are constants a, b, p, q > 0 such that for

F (v, u) :=

(

v − λ

γ

)2

+ a

∫ ∞

y0

y u(y) dy + b

∫ ∞

y0

u(y) dy

there holds

F (v, u)(t) + p

∫ t

0

∫ ∞

y0

u(s, y) dy ds + q

∫ t

0

∫ ∞

y0

y u(s, y) dy ds ≤ F (v0, u0)

for each t ≥ 0, where (v, u) is either the classical solution or the weak solution
constructed in Theorem 3.1 or Theorem 4.3, respectively.
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Proof. Defining

A :=
τ

2
(µ + 2 δ0) > 0 , B := 2 δ1 − ε1 − τ λ

2 γ
, C := 4 δ1 (ε1 − δ1) ≥ 0

and d := τd0/4, (65) can be recast as

A

4d
> −B +

Cd

A
.

Therefore, with

b :=
A

4d2
+

C

A
>

C

A
≥ 0

we have bd < B +
√

Ab − C, hence

0 <
4

τ
b d < a <

4

τ

(

B +
√

Ab − C
)

and
4

τ

(

B −
√

Ab − C
)

< a (66)

for a := 2/τ
(

max{bd,B −
√

Ab − C} + B +
√

Ab − C
)

. We set

R := b (µ + 2 δ0) +
4λ δ1

γ
− τ λ2

2 γ2
− 2 ε2

1

τ
− 2λ ε1

γ

and notice that 0 < Ab − C = B2 + τR/2, hence p := −τa2/8 + Ba + R > 0 by
(66). Since (66) also warrants that d0 < a/b, we infer from (64) the existence of
q > 0 such that

ess-sup
y∈Y

β(y)

yµ(y)
+

q

b
ess-sup

y∈Y

1

µ(y)
<

a

b
. (67)

Now, in the case of the classical solution one can show directly that

d

dt
F (v, u)(t) ≤ − p |u(t)|1 − q

∫ ∞

y0

u(t, y) y dy , t ≥ 0 ,

using estimates very close to the subsequent ones. We hence focus on the case of
weak solutions. Let (vn, un) be the approximations of (v, u) corresponding to the
data (v0, u0

n, βn, µn) as in the proof of Theorem 4.3. Then it follows from (12), (14)
and (18) that

d

dt
F (vn, un) = − 2 γ

(

vn − λ

γ

)2

− 2 τ v2
n |un|1 +

2τλ

γ
vn |un|1

+ 4

(

vn − λ

γ

)
∫ ∞

y0

un(y)βn(y)

∫ y0

0

y′ κ(y′, y) dy′ dy

+ a τ vn |un|1 − a

∫ ∞

y0

y µn(y)un(y) dy

− 2 a

∫ ∞

y0

un(y)βn(y)

∫ y0

0

y′ κ(y′, y) dy′ dy

− b

∫ ∞

y0

µn(y)un(y) dy

+ b

∫ ∞

y0

un(y)βn(y)

(

1 − 2

∫ y0

0

κ(y′, y) dy′

)

dy .
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Recalling that µ > 0 and ε1 < ∞, integration of the above equality yields (for
n > µ)

F (vn, un)(t) +

∫ t

0

|un(s)|1
(

2 τ vn(s)2 + b µ
)

ds

+

∫ t

0

∫ ∞

y0

un(s, y)βn(y)

[

(

4λ

γ
+ 2 a

)
∫ y0

0

y′ κ(y′, y) dy′

+ 2 b

∫ y0

0

κ(y′, y) dy′

]

dy ds

+ a

∫ t

0

∫ ∞

y0

y µn(y)un(s, y) dy ds

≤ F (v0, u0
n) + b

∫ t

0

∫ ∞

y0

un(s, y)βn(y) dy ds

+

∫ t

0

|un(s)|1 vn(s) ds

(

2τλ

γ
+ a τ + 4 ε1

)

.

(68)

Observe then that (57) ensures

F (v, u)(t) ≤ lim
n→∞

F (vn, un)(t) , t ≥ 0 . (69)

Next, (57) and Lebesgue’s theorem imply

lim
n→∞

∫ t

0

|un(s)|1 vn(s) ds =

∫ t

0

|u(s)|1 v(s) ds , t ≥ 0 . (70)

As in (61) one shows that

lim
n→∞

∫ t

0

∫ ∞

y0

un(s, y) βn(y)

∫ y0

0

(y′)k κ(y′, y) dy′ dy ds

=

∫ t

0

∫ ∞

y0

u(s, y)β(y)

∫ y0

0

(y′)k κ(y′, y) dy′ dy ds

(71)

for k = 0, 1. Owing to Lemma 4.2, (48), (52) and (57) we may apply Lebesgue’s
theorem to conclude

lim
n→∞

∫ t

0

∫ ∞

y0

χ(y0,R)(y) un(s, y)µn(y) y dy ds

=

∫ t

0

∫ ∞

y0

χ(y0,R)(y)u(s, y)µ(y) y dy ds

for each R > y0, hence

∫ t

0

∫ ∞

y0

u(s, y)µ(y) y dy ds ≤ lim
n→∞

∫ t

0

∫ ∞

y0

un(s, y)µn(y) y dy ds . (72)



20 G. SIMONETT AND C. WALKER

Thus, in view of (69)-(72) we may pass to the limit in (68) to deduce that this
inequality is still true if we replace (vn, un) by (v, u) and (βn, µn) by (β, µ), respec-
tively. Rearranging the terms and using the definition of δk we derive

F (v, u)(t) +

∫ t

0

|u(s)|1
{

2 τ v(s)2 −
(2τλ

γ
+ 4 ε1 + a τ

)

v(s)

+ b (µ + 2δ0) +
(4λ

γ
+ 2 a

)

δ1

}

ds

+

∫ t

0

∫ ∞

y0

(

a y µ(y) − b β(y)
)

u(s, y) dy ds

≤ F (v0, u0)

for each t ≥ 0. Minimizing the quadratic function in the curly brackets and observ-
ing then that p > 0 is a lower bound, the assertion follows from (67). �

Remark 5.2. In the case of rates subject to (5) it has already been observed in [4]
that the function F defined in Lemma 5.1 is a Lyapunov function.

The next theorem shows that the disease-free steady state is asymptotically
stable.

Theorem 5.3. Suppose (62) or (63) is satisfied and that (64), (65) hold. Then,
given ε > 0 there exists δ > 0 such that

|v(t) − λ/γ| + ‖u(t)‖E0
≤ ε , t ≥ 0 ,

whenever

|v0 − λ/γ| + ‖u0‖E0
≤ δ ,

where (v, u) is either the classical solution or the weak solution constructed in The-
orem 3.1 or Theorem 4.3, respectively.

Moreover, if β(y) ≤ By for a.e. y ∈ Y and some B > 0, then
(

v(t), u(t)
)

−→ (λ/γ, 0) in R × L1(Y, yσdy) as t −→ ∞
for each σ < 1 and any initial value (v0, u0) subject to (62) or (63).

Proof. Defining F as in Lemma 5.1, the first statement readily follows from the
fact that F (v, u)(t) ≤ F (v0, u0) for t ≥ 0. Next, Lemma 5.1 also ensures that

‖u(t)‖L1(Y,ydy) ≤ 1

a
F (v0, u0) , t ≥ 0 . (73)

Furthermore, by definition of a weak solution we have

|u(t)|1 = |u0|1 +

∫ t

0

∫ ∞

y0

L[u(s)](y) dy ds , t ≥ 0 ,

from which we infer that

1

h

(

|u(t + h)|1 − |u(t)|1
)

=
1

h

∫ t+h

t

∫ ∞

y0

L[u(s)](y) dy ds

≤ 1

h

∫ t+h

t

∫ ∞

y0

u(s, y)β(y) dy ds

≤ B sup
s≥0

‖u(s)‖L1(Y,ydy) ,
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for t ≥ 0 and h > 0. Thus, (73) yields

|u(t + h)|1 − |u(t)|1 ≤ c h , t , h > 0 . (74)

Lemma 5.1 also ensures that
∫ ∞

0

|u(s)|1 ds ≤ 1

p
F (v0, u0) . (75)

Combining (74) and (75) we conclude that limt→∞ |u(t)|1 = 0, which, together
with (73), warrants that for each σ < 1

u(t) −→ 0 in L1(Y, yσdy) as t −→ ∞ . (76)

Finally, since ε1 < ∞ both g(u(t)) and |u(t)|1 tend to 0 as t → ∞ due to (76).
Since v ∈ C1(R+) solves (1), it is easy to check that v(t) converges to λ/γ. �

The result above can be improved in the case of classical solutions as follows.

Corollary 5.4. Suppose (62), (64), and (65) hold. Then the classical solution
(v, u) corresponding to v0 > 0 and u0 ∈ E+

1 satisfies

(v, u) −→ (λ/γ, 0) in R × L1(Y, ydy) as t −→ ∞ .

Proof. Set

Q(t) :=

∫ ∞

y0

y u(t, y) dy ≥ 0 , t ≥ 0 .

Then Q ∈ C1(R+) according to Theorem 3.1. From Lemma 5.1 it follows that

Q(t) +

∫ ∞

0

Q(s) ds ≤ c , t ≥ 0 . (77)

In addition, v(t) ≤ c for each t ≥ 0, whence

Q̇(t) ≤ τ v(t) |u(t)|1 ≤ c , t ≥ 0 . (78)

Consequently, we deduce limt→∞ Q(t) = 0 from (77) and (78). �

Remarks 5.5. (a) As was pointed out in the introduction, equations (1), (2) are
no longer coupled in case the rates are subject to (5), since v is then completely
determined for all t ≥ 0. In this case the results in [3] yield a semiflow in the
natural phase space R

+ ×L+
1 (Y, ydy), whereas Theorem 4.3 guarantees existence of

weak solutions only for initial values (v0, u0) ∈ R
+ × L+

1 (Y, yαdy) with α > 1.
However, in this particular case it can be easily verified that the function (v, u)

in (57) satisfies Definition 4.1 for any initial value (v0, u0) ∈ R
+ × L+

1 (Y, ydy),
provided one takes test functions ϕ ∈ W 1

∞(Y ) with compact support. For this one
should note that limy→∞ ̺(y) = 0 is merely required for step (v) in the proof of
Theorem 4.3.

(b) If the kernels are of the form (5), then we may take d0 = β/µ, δ0 := βy0

and ε1 := δ1 := βy2
0/2, so (65) is equivalent to (9). We should like to point

out that in this case the authors in [3] prove that the disease-free steady state
is globally exponentially stable in R

+ × L+
1 (Y, ydy), and asymptotically stable if

βy0 + µ =
√

βλτ/γ.

(c) If the rates are subject to (5) it has already been observed in [4] that system
(1)–(2) admits also a non-trivial (disease) steady state, provided the inequality in
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(9) is reversed. It is shown in [3] that this steady state is again globally asymptot-
ically stable in R

+ × L+
1 (Y, ydy). For general rates as in the present publication,

existence of other equilibria besides (λ/γ, 0) is an open problem.
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