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Abstract

We consider the discrete coagulation–fragmentation equations with di�usion presupposing a
maximal cluster size. Such a feature requires a new interaction mechanism in order to prevent
occurrence of too large clusters being produced by coagulation. Existence of a unique solution
for this model is proven and long-time behaviour is studied in situations, where equilibria are
explicitly known.
? 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In this paper, we study the particular case of the discrete coagulation–fragmenta-
tion equations with di�usion, when a maximal cluster size is presupposed. This feature
requires a new interaction mechanism opposing the increase of clusters due to coag-
ulation. The idea is that colliding particles with cumulative size beyond the maximal
size may merge, but result in a highly unstable cluster which immediately scatters into
particles with size less than or equal to the maximal size. Such a scattering mech-
anism was introduced in [17] for non-di�usive continuous coagulation–fragmentation
processes describing the dynamics of two-phase liquids, and was then developed further
in [31,32]. We adopt here this idea to discrete processes taking into account movement
of particles due to di�usion. Moreover, we also consider the possibility of collisional
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breakage. Even though contemplated in physical literature (see [12,13], or [34]), it has
hardly been investigated mathematically so far (however, see [24,31–33]).
We assume clusters to be multiples of an elementary identical unit, and we denote

by M the maximal cluster size. Representing the number of i-clusters at time t and
position x by ui = ui(t; x)—more precisely,∫

B
ui(t; x) dx

accounts for the number of clusters of size i contained in the space region B at
time t—the evolution of clusters undergoing coagulation and fragmentation can be
described by the reaction–di�usion equations

u̇ i − diBui = ’(u)gi(x; u) in �; t ¿ 0;

@�ui = 0 on@�; t ¿ 0; (CF)

ui(0) = u0i in �

for 16 i6M , where u := (u1; : : : ; uM ). Here � is a bounded and smooth domain in
Rn, � is its outward unit normal vector, and di ¿ 0 are the di�usion coeEcients. The
reaction terms gi(x; u) are deFned for 16 i6M and x∈� as

gi(x; u) :=
M∑

j=i+1

�j; i(x)uj − ui
i−1∑
j=1

j
i
�i; j(x) +

1
2

i−1∑
j=1

Kj; i−j(x)Pj; i−j(x)ujui−j

+
1
2

M∑
j=i+1

j−1∑
k=1

Kk;j−k(x)Qk;j−k(x)�cj; i(x)ukuj−k

−ui
M−i∑
j=1

(Pi;j(x) + Qi;j(x))Ki;j(x)uj

+
1
2

2M∑
j=M+1

M∑
k=j−M

Kk;j−k(x)�sj; i(x)ukuj−k − ui
M∑

j=M−i+1

Ki;j(x)uj

with the convention that a sum is deFned as zero if the upper summation index is
smaller than the lower one. The coeEcients �i; j ; 16 j¡ i6M , represent the rate at
which an i-cluster splits into a cluster of size j, so the Frst two sums in the deFnition
of gi(x; u) give the gain and loss of i-clusters due to fragmentation. The next three sums
describe the possible interactions of two colliding clusters i and j with cumulative size
i+ j less than or equal to M . They either coalesce with probability Pi;j, or a shattering
of these particles occurs with probability Qi;j, or just nothing happens meaning that
the clusters remain unchanged. This demands

06Pi;j(x) + Qi;j(x)6 1; 16 i + j6M; x∈�: (1)

The rate of collision of two clusters i and j is denoted by Ki;j. For high-energy
collisions of clusters i and j with i+ j6M , �ci+j; k stands for the expected number of
fragments of size k ∈ {1; : : : ; i+ j−1}. Furthermore, the last two sums in the deFnition
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of gi(x; u) reHect the scattering process. For i + j∈ {M + 1; : : : ; 2M}, �si+j; k gives the
expected number of daughter clusters of size k ∈ {1; : : : ; M}. Both collisional breakage
and scattering are assumed to be mass preserving, that is, for all x∈� it holds

i−1∑
j=1

j�ci; j(x) = i; 26 i6M and
M∑
j=1

j�si; j(x) = i; M ¡ i6 2M: (2)

Finally, also a new feature in our model is the eEciency factor ’(u) enhancing or
depressing the dynamics, while the mechanical structure of the processes are described
by the kernels �i; j ; �ci; j ; �

s
i; j ; Ki; j ; Pi; j, and Qi;j. For instance, a possible choice of ’ is

’(u) := �

(
M∑
i=1

i
∫
�
ui(x) dx;

M∑
i=1

∫
�
ui(x) dx

)
;

where � :R2 → R+ is a given function. This means that ’(u) is related to the total
mass and the total number of particles.
As mentioned before, the model above is an adaptation of the continuous model

without di�usion considered in [31,33], which, on the other hand, is based on the
model proposed in [17] (see also [9,26]). For a treatment of the continuous model
with di�usion we refer to [32]. To the best of our knowledge, discrete coagulation
–fragmentation processes including the scattering phenomenon have never been con-
sidered in literature so far, whereas literature on discrete models without scattering is
quite extensive. For the latter case with di�usion we refer to [8,14,15,19,21,23,25,35],
and the references therein.
Clearly, presupposing a maximal cluster size simpliFes the problem enormously—as

long as not global existence is concerned for cluster size-dependent di�usion coeE-
cients, as we shall see.
This paper is organized as follows: in Section 2 we introduce the notation that

will be used throughout. Section 3 is dedicated to existence results. Finally, Section
4 then deals with certain aspects of large time behaviour. It should be remarked that
our Fnite-dimensional problem (CF) always admits inFnitely many equilibria—that is,
spatially homogeneous steady states—without any assumptions on the kernels restrict-
ing the physics, except for being independent of the space variable x. Three di�erent
situations will then be analysed, for which convergence towards equilibrium can be
shown.

2. Notations and conventions

Let us introduce some notations, which will be used in the sequel. Given any interval
J in R we put J̇ := J \ {0}. Furthermore, L(E; F) stands for the set of all continuous
and linear operators from a Banach space E into another Banach space F equipped
with the topology of uniform convergence on bounded subsets.
In the following, � will always denote a bounded and smooth domain in Rn. Given

16p6∞ and �¿ 0 we denote by W�
p := W�

p (�) the usual Sobolev–Slobodeckii
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space of order �, and we also put Lp := Lp(�). Observe that Lp =W 0
p and

W�
p ,→ W"

q ; �¿"¿ 0; � − n=p¿" − n=q:

Moreover, we deFne

W�
p;B :=

{ {u∈W�
p ; @�u= 0}; �¿ 1 + 1=p;

W�
p ; 06 �¡ 1 + 1=p:

Then it is well known (see [30]) that for 1¡p¡∞
(Lp;W 2

p;B)%;p
:= W 2%

p;B; 2%∈ (0; 2) \ {1; 1 + 1=p}
and

[Lp;W 2
p;B]1=2

:= W 1
p;B;

where (·; ·)%;p and [·; ·]% denote the real and the complex interpolation functor, respec-
tively.
For the next few basic properties of the Laplace operator subject to Neumann bound-

ary conditions we refer to [2,28]. We denote by A1 the closure of −B|C2
B(�)

in L1,
where C2

B(�) := {u∈C2(�); @�u = 0}, and for 1¡p¡∞ we set Apu := −Bu
for u∈W 2

p;B. Then, −Ap is for each p∈ [1;∞) the generator of a positive, compact
analytic semigroup {e−tAp ; t¿ 0} of contractions in Lp. It holds

A1|Lp∩dom(A1)
= Ap; 1¡p¡∞

and

e−tA1 |Lp = e−tAp ; t¿ 0; 1¡p¡∞:

This justiFes to set A := A1 in the sequel. From the estimates

‖e−tA‖L(Lp;Lq)6 cT t−(n=2)(1=p−1=q); 0¡t6T; 16p¡q6∞
and

‖Ae−tA‖L(Lp)6 cT t−1; 0¡t6T; 16p¡∞;

it follows by interpolation

‖e−tA‖L(Lp;W"
q;B)6 cT t−(n=2)(1=p−1=q)−"=2; 0¡t6T

for "∈ [0; 2] \ {1 + 1=q} and 16p6 q¡∞, where q¿ 1. We also have

‖e−tA‖L(W"
p;B ;W

�
p;B)
6 cT t−(�−")=2; 0¡t6T

for 1¡p¡∞ and 06 "6 �6 2 with "; � �= 1 + 1=p.
For Fxed di ¿ 0; 16 i6M , it is then obvious that all of these properties carry over

to the generator

−A := −A(d1; : : : ; dM ) := diag[ − d1A; : : : ;−dMA]
of the semigroup

e−tA := diag[e−td1A; : : : ; e−tdMA]

in Lp := Lp(�;RM ). To simplify the notation we put again W�
p := W�

p (�;RM ) and
W�

p;B := W�
p;B(�;RM ) since there will no confusion arise in the sequel whether the
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spaces are scalar- or vector-valued. Moreover, L+p denotes the positive cone of Lp, and
‖ · ‖p is the norm in Lp.

3. Existence, uniqueness, and other properties

Throughout we use the notations of the last section and we assume the following
hypotheses to be satisFed:

(H1) ’ :L2 → Ṙ+ is uniformly Lipschitz continuous and bounded on bounded subsets
of L2 = L2(�;RM ).

(H2) Each of the maps �i; j ; �ci; j ; �
s
i; j ; Ki; j ; Pi; j, and Qi;j is *-HMolder continuous from N�

into R+ for some *¿ 0.
(H3) Collisional breakage and scattering are mass preserving, that is, �ci; j and �si; j

satisfy (2).
(H4) For all x∈� it holds Ri;j(x)=Rj; i(x) for R∈ {K; P; Q}, and P and Q satisfy (1).
(H5) For each i∈ {1; : : : ; M} it holds di ¿ 0.

We rewrite the discrete coagulation–fragmentation equations (CF) as a semilinear
Cauchy problem of the form

u̇+Au= f(u); t ¿ 0;

u(0) = u0; (∗)
where A := A(d1; : : : ; dM ); u= (u1; : : : ; uM ); u0 = (u01; : : : ; u

0
M ), and f is given by f(u)

:= ’(u)g(u) with g denoting the Nemytskii operator induced by (g1; : : : ; gM ), that is

g(u)(x) := (g1(x; u(x)); : : : ; gM (x; u(x))); x∈�; u :� → RM :

If J ⊂ R+ denotes a perfect interval containing 0, we mean by a mild Lp-solution to
problem (∗) a function u∈C(J; Lp) satisfying the integral equation

u(t) = e−tAu0 +
∫ t

0
e−(t−s)Af(u(s)) ds; t ∈ J:

A strong Lp-solution to (∗) is a function

u∈C(J; Lp) ∩ C1(J̇ ; Lp) ∩ C(J̇ ; W 2
p;B)

satisfying (∗) pointwise.
In particular, given any mild (strong) Lp-solution u to (∗), each component ui is

then a mild (strong) Lp-solution to the ith equation of (CF).
Let us observe that, for u=(u1; : : : ; uM ); r=(r1; : : : ; rM )∈RM , and x∈�, the identity

M∑
i=1

rigi(x; u) =
M∑
i=2

i−1∑
j=1

(
rj − j

i
ri

)
�i; j(x)ui

+
1
2

∑
26i+j6M

{
ri+jPi; j(x) − (ri + rj)(Pi;j(x) + Qi;j(x))
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+Qi;j(x)
i+j−1∑
k=1

rk�ci+j; k(x)

}
Ki;j(x)uiuj

+
1
2

∑
M¡i+j62M

(
M∑
k=1

rk�si+j; k(x) − ri − rj

)
Ki;j(x)uiuj (3)

holds, which we will use in the following.
We then can prove the following theorem on existence and uniqueness of solutions.

Theorem 1. Let 26p¡∞ and n¡ 2p. Then, given any u0 ∈L+p , problem (∗)
possesses a unique maximal mild solution u := u(·; u0)∈C(J (u0); L+p), where J (u0)
denotes the maximal interval of existence. In addition, it holds

M∑
i=1

i
∫
�
ui(t) dx =

M∑
i=1

i
∫
�
u0i dx; t ∈ J (u0) (4)

and the solution u has the regularity

u∈C(J̇ (u0); W �
p;B); �∈ [0; 2 − n=p) \ {1 + 1=p}; (5)

where the dot of J̇ (u0) can be skipped provided that u0 ∈W�
p;B. Furthermore, if

n¡ 4p=3 then, for each �∈ [0; 2] \ {1 + 1=p} and u0 ∈W�
p;B

u∈C(J (u0); W �
p;B) ∩ C(J̇ (u0); W 2

p;B) ∩ C1(J̇ (u0); Lp) (6)

is a strong solution to (∗). Finally, if d1 = · · · = dM then J (u0) = R+ and

‖u(t)‖p6 c‖u0‖p; t¿ 0 (7)

for some c¿ 0 independent of p.

Proof. We perform the proof in several steps.
(i) First, recall hypothesis (H1) and observe that

‖g(v) − g(w)‖p=26 c(1 + ‖v‖p + ‖w‖p)‖v − w‖p; v; w∈Lp; (8)

whence f :Lp → Lp=2 is uniformly Lipschitz continuous on bounded subsets of Lp.
Also note that

‖e−tA‖L(Lp=2 ;Lp)6 cT t−n=2p; 0¡t6T:

Then, since t �→ t−n=2p is integrable on (0; T ) for each T ¿ 0, standard arguments entail
that problem (∗) admits for each u0 ∈Lp a unique maximal mild solution
u := u(·; u0)∈C(J (u0); Lp). Moreover, u(·; u0) depends continuously on the initial
value u0 in the sense that, given any T ∈ J (u0), there is a neighbourhood U of u0 in
Lp such that [0; T ] ⊂ J (v0) for each v0 ∈U and

u(·; v0) → u(·; u0) in C([0; T ]; Lp) as v0 → u0:

Furthermore, (4) follows from∫
�
e−tdiAv dx =

∫
�
v dx; v∈Lp(�); t¿ 0; (9)
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which is consequence of the Neumann boundary conditions, and from
M∑
i=1

igi(x; w) = 0; w∈RM ; x∈�: (10)

(ii) Next, due to

‖e−tA‖L(Lp=2 ;W
�
p;B)
6 cT t−n=2p−�=2; 0¡t6T; � �= 1 + 1=p;

we deduce(
t �→

∫ t

0
e−(t−s)Af(u(s)) ds

)
∈C(J (u0); W �

p;B)

for �∈ [0; 2 − n=p) \ {1 + 1=p} since f(u)∈C(J (u0); Lp=2). This implies (5).
(iii) Assume now that n¡ 4p=3 so that we Fnd 2∈ (n=2p; 2−n=p)\{1+1=p}. Fix

3∈ J̇ (u0) and put J3 := (J (u0) − 3) ∩R+. Then u3 := u(· + 3; u0) is a mild solution to
the linear problem

v̇+Av= b3(t); t ∈ J̇ 3;

v(0) = u3(0); (11)

where b3 := f(u3). Since u3 ∈C(J3;W2
p;B) by (5) and 2¿n=2p, the multiplication

result of [3, Theorem 4.1] implies b3 ∈C(J3;W "
p;B) for some "¿ 0 suEciently small

(recall that the kernels are HMolder continuous with respect to x∈�). Applying then
[5, II.Theorem 1.2.2] we derive that

u3 ∈C1(J̇ 3; Lp) ∩ C(J̇ 3; W 2
p;B)

is a strong solution to (11), due to the fact that mild solutions to linear problems are
unique. Let then 3 tend to zero in order to conclude that

u∈C1(J̇ (u0); Lp) ∩ C(J̇ (u0); W 2
p;B)

is a strong solution to problem (∗).
Furthermore, if u0 ∈W�

p;B for some �∈ [2 − n=p; 2] \ {1 + 1=p}, we have as above
f(u)∈C(J (u0); W "

p;B). Therefore,(
t �→

∫ t

0
e−(t−s)Af(u(s)) ds

)
∈C(J (u0); W �

p;B)

by virtue of

‖e−tA‖L(W"
p;B ;W

�
p;B)
6 cT t−(�−")=2; 0¡t6T; " �= 1 + 1=p:

It follows that (6) holds true.
(iv) We now show positivity of the solution. If n¡ 4p=3 and u0 ∈W 2

p;B ∩ L+p we
see that

ui ∈C(J (u0); W 2
p;B) ,→ C(J (u0); L∞)

is for each i∈ {1; : : : ; M} a strong solution to a problem of the form

u̇ i − diBui = hi(u; u) − uiHi(u); @�ui = 0; ui(0)¿ 0;
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where hi and Hi are functions satisfying hi¿ 0 on (R+)M × (R+)M and Hi¿ 0 on
(R+)M , respectively. Thus, standard arguments entail that ui(t; u0)¿ 0 in � for each
i∈ {1; : : : ; M} and t ∈ J (u0).
If u0 ∈L+p and still n¡ 4p=3, use the continuous dependence on the initial value

and the density of W 2
p;B ∩ L+p in L+p (see [5, V.Proposition 2.7.1]) in order to deduce

that ui(t; u0)¿ 0 a.e. in � for each i∈ {1; : : : ; M} and t ∈ J (u0).
We proceed with a bootstrapping argument. Temporarily, the mild solution to (∗)

for u0 ∈L+p will be denoted by u(p) ∈C(Jp(u0); Lp). We then say that P(7) holds true
if

u(p)(t)∈L+p for t ∈ Jp(u0) and n¡7p:

Next, we claim that P(7) implies P(1 + 7=2) provided that 7∈ [ 43 ; 2). For, let P(7)
hold true for some 7∈ [ 43 ; 2) and assume 76 n=p¡ 1 + 7=2. Then there exists 3¿ 0
suEciently small such that 2−2n=p¿−7+23. Put � := 2−n=p−3 and q := n=(7−3).
In particular, � − n=p¿− n=q so that, given u0 ∈W 2

p;B ∩ L+p , we have

u(p) ∈C(Jp(u0); W
�
p;B) ,→ C(Jp(u0); Lq)

according to (5). But then u(q) ⊃ u(p) and hence u(p)(t)∈L+p for t ∈ Jp(u0) since P(7)
holds true by assumption. Using again the continuous dependence on the initial value
and the density of W 2

p;B ∩ L+p in L+p , we deduce that P(7) indeed implies P(1 + 7=2)
for 7∈ [ 43 ; 2).

But we already know that P( 43 ) holds true. Hence, we inductively obtain that P(7j)
holds true, where 7j := 1 + 7j−1=2 for j¿ 1 with 70 := 4

3 . Since 7j ↗ 2 we thus have
proved that u(t; u0)∈L+p for t ∈ J (u0) whenever u0 ∈L+p and n¡ 2p.
(v) Finally, recalling the deFnition of a mild solution and the fact that −A generates

a contraction semigroup, (10) entails in the case d1 = · · · = dM∥∥∥∥∥
M∑
i=1

iui(t; u0)

∥∥∥∥∥
p

6
M∑
i=1

i‖u0i ‖p; t ∈ J (u0);

whence the positivity of ui(t; u0) yields (7) and J (u0) = R+. This completes the
proof.

Remark 2. It is out of our knowledge how to prove global existence if the di�usion
coeEcients depend on the cluster size. For instance, the method developed in [35,
Lemma 2.2] seems not to work due to the scattering term.

4. Asymptotic behaviour

We now focus our attention on long-time behaviour of the solutions obtained in
the previous section. For the remainder, we assume that the di�usion coeEcients are
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independent of cluster size, that is,

d := d1 = · · · = dM ¿ 0:

In the following, for u0 ∈L+p given with 26p¡∞ and n¡ 2p, we denote by
u = u(·; u0)∈C(R+; L+p) the unique mild solution to problem (∗). Let us remark that
we require cluster size-independent coeEcients mainly to guarantee global existence.
We Frst need an auxiliary result in the spirit of [7].

Proposition 3. Let 26p¡∞ and n¡ 2p. Given T ¿ 0 put

�(f)(t) :=
∫ t

0
e−(t−s)Af(s) ds; 06 t6T; f∈L∞((0; T ); Lp=2):

Then �∈L(L∞((0; T ); Lp=2); C([0; T ]; Lp)) maps bounded sets into compact sets.

Proof. For v∈Lp=2 and t; h¿ 0 it follows from [27, Theorem 1.2.4(b)] that

‖e−(t+h)Av − e−tAv‖p =

∥∥∥∥∥A
∫ h

0
e−sAe−tAv ds

∥∥∥∥∥
p

6 ‖Ae−tA‖L(Lp)

∫ h

0
‖e−sA‖L(Lp=2 ;Lp) ds‖v‖p=2;

whence

‖e−(t+h)A − e−tA‖L(Lp=2 ;Lp)6 cT
h1−n=2p

t
;

t ¿ 0; h¿ 0; t + h6T + 1: (12)

Use then this inequality instead of (4) in [7] and replace (3) of the latter by

‖e−tA‖L(Lp=2 ;Lp)6 cT t−n=2p; 0¡t6T:

Then the proofs of [7, Lemmas 1(ii), 2] carry over to our situation. This implies the
statement.

As an immediate consequence we deduce the following corollary.

Corollary 4. Let 26p¡∞ and n¡ 2p. Given any u0 ∈L+p , any sequence tm ↗ ∞,
and any T ¿ 0 there exists a subsequence (tmk ) and Nu∈C([0; T ]; L+p) such that

u(· + tmk ; u
0) → Nu in C([0; T ]; Lp):

Moreover, it holds

Nu(t) = e−tA Nu(0) +
∫ t

0
e−(t−s)Af( Nu(s)) ds; 06 t6T

and
M∑
i=1

i
∫
�
Nu i(t) dx =

M∑
i=1

i
∫
�
u0i dx; 06 t6T: (13)
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Proof. For tm¿ 1 put um := u(· + tm − 1). By Theorem 1, the sequence (f(um))m is
bounded in L∞((0; T +1); Lp=2) so that we can extract a subsequence (mk) in order to
deduce that (�(f(umk ))mk converges in C([0; T + 1]; L+p) due to Proposition 3. More-
over, invoking (12), the ArzelQa–Ascoli theorem entails that we can extract a further
subsequence (m′

k) such that (e−tAum
′
k (0))m′

k
converges in C([1; T + 1]; L+p). Therefore,

(u(· + tm′
k
))m′

k
converges in C([0; T ]; L+p). The statements are then consequences of

u(t + tm′
k
; u0) = e−tAu(tm′

k
) +

∫ t

0
e−(t−s)Af(u(s+ tm′

k
)) ds; 06 t6T;

of (8) combined with Gronwall’s lemma, and of (4).

Remark 5. Given 26p¡∞ with n¡ 2p, Corollary 4 states in fact that the !-limit
set !p(u0) in Lp, deFned by

!p(u0) := {v∈Lp; there exists tm ↗ ∞ with u(tm; u0) → v in Lp}
is for each u0 ∈L+p non-empty. Obviously, it holds, in addition, !p(u0) ⊂ L+p and

M∑
i=1

i
∫
�
vi dx =

M∑
i=1

i
∫
�
u0i dx; v∈!p(u0):

Temporarily assume that all kernels are independent of x∈�. Considering then the
ordinary di�erential equation

ż = g(z); t ¿ 0; z(0) = z0;

in RM , it is easily seen that

Y% :=

{
z ∈RM ; zi¿ 0;

M∑
i=1

izi = %

}

is for each %¿ 0 a compact, convex, and positively invariant set. According to [4,
Satz 22.13] there exists u% ∈Y% satisfying g(u%) = 0. Due to the Neumann boundary
conditions, the original problem (∗) thus always has inFnitely many equilibria—-that
is, spatially homogeneous steady states—provided that the non-negative kernels satisfy
(H3) and (H4) and do not depend on x∈�.
Based on Corollary 4, we consider now some special cases for which equilibria are

explicitly known.

4.1. Dominating coagulation

Throughout this subsection we assume that hypotheses (H1)–(H4) hold. Additionally,
we suppose that there is no fragmentation, that is, � ≡ 0, and that only binary shattering
and binary scattering occurs, i.e., for each x∈� it holds

�ci; j(x) = �ci; i−j(x); 16 j¡ i6M; (14)

as well as

�si; j(x) = �si; i−j(x); 16 i −M6 j6M (15)
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and

�si; j(x) = 0; 16 j¡ i −M6M: (16)

Observe that (H3) then implies for each x∈�
i−1∑
j=1

�ci; j(x) = 2; 26 i6M and
M∑

j=i−M

�si; j(x) = 2; M ¡ i6 2M: (17)

In particular, this entails that (0; : : : ; 0; a)∈RM is for each a¿ 0 an equilibrium of
problem (∗) since �s2M;M ≡ 2.
We also require the technical assumptions 1

Pi; i(x)Ki; i(x)¿ 0; 16 i6 [M=2]; x∈� (18)

and that for each i∈ {[M=2] + 1; : : : ; M − 1} there is r ∈ {2i −M; : : : ; i − 1} with

Ki; i(x)�s2i; r(x)¿ 0; x∈�: (19)

Then we can prove the following result.

Theorem 6. Suppose � ≡ 0 and that (14)–(19) are satis<ed. For 26p¡∞ and
n¡ 2p let u0 ∈L+p . Then, given any sequence tm ↗ ∞, it holds

ui(· + tm; u0) → 0 in C(R+; Lp); 16 i6M − 1:

Moreover, for T ¿ 0 there exists a subsequence (tmk ) and Nu 0 ∈L+p (�) with∫
�
Nu 0 dx =

1
M

M∑
i=1

i
∫
�
u0i dx

such that

uM (· + tmk ; u
0) → Nu in C([0; T ]; Lp);

where Nu(t) := e−tdA Nu 0; t¿ 0, is the unique solution to

v̇ − dBv= 0; @�v= 0; v(0) = Nu 0:

Proof. For ui = ui(·; u0) deFne

N (t) :=
M∑
i=1

∫
�
ui(t; x) dx; t¿ 0 (20)

so that (3), (9), and (14)–(16) imply

N (t) +
1
2

∑
26i+j6M

∫ t

0
’(u)

∫
�
Pi; jKi; juiuj dx ds= N (0); t¿ 0: (21)

1 For m∈N, [m] denotes the Gauss brackets of m, i.e., [m] is deFned as m=2 if m is even and it is deFned
as (m − 1)=2 otherwise.
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Let T ¿ 0 be arbitrary. Due to Corollary 4 we may choose a subsequence (tmk ) and
Nu∈C([0; T ]; L+p) such that

umk := u(· + tmk ; u
0) → Nu in C([0; T ]; Lp):

According to (H2) and (21) we obtain

06
∑

26i+j6M

∫ T

0
’( Nu)

∫
�
Pi; jKi; j Nu i Nuj dx ds

= lim
k

∑
26i+j6M

∫ T+tmk

tmk

’(u)
∫
�
Pi; jKi; juiuj dx ds= 0:

Eq. (18) entails then

Nu i(t) = 0; 16 i6 [M=2]; 06 t6T: (22)

Next, we claim that if, for some l∈ {[M=2]; : : : ; M − 2},
Nu i(t) = 0; 16 i6 l; 06 t6T;

then Nul+1(t) = 0 for 06 t6T . Indeed, (19) guarantees that we can choose some
r ∈ {2(l+ 1) −M; : : : ; l} such that

Kl+1; l+1(x)�s2(l+1); r(x)¿ 0; x∈�

and hence

0 =
∫ T

0

∫
�
fr( Nu) dx ds=

1
2

∫ T

0
’( Nu)

∫
�

M+r∑
j=M+1

M∑
k=j−M

Kk;j−k�sj; r Nuk Nuj−k dx ds

¿
1
2

∫ T

0
’( Nu)

∫
�
Kl+1; l+1�s2(l+1); r| Nul+1|2 dx ds¿ 0;

where the Frst equality stems from (9) and Corollary 4. Therefore, we deduce from
(22) by induction that

Nu i(t) = 0; 16 i6M − 1; 06 t6T:

In particular, this implies

fM ( Nu(t)) = ’( Nu(t))KM;M

(
1
2
�s2M;M − 1

)
| NuM (t)|2 = 0; 06 t6T

due to �s2M;M ≡ 2. Corollary 4 then yields

NuM (t) = e−tdA NuM (0); 06 t6T:

Remark 7. (a) It seems to be reasonable to suppose that Nu from the previous theorem is
independent of spatial coordinates. However, we were not able to prove it for lack of a
suitable a priori estimate for ∇uM . Under the assumptions of the following subsections
we will obtain corresponding estimates.



C. Walker /Nonlinear Analysis 58 (2004) 121–142 133

(b) A result similar to the one of Theorem 6 was obtained in [8, Theorem 3.1,
Remark 3.2] for di�usive discrete coagulation processes (without fragmentation) in the
case M = ∞. More precisely, the—not necessarily unique—solution u constructed in
[8, Theorem 3.1] satisFes ‖ui(t)‖∞ → 0 for all i¿ 1.

4.2. Dominating fragmentation

In this subsection, we again assume hypotheses (H1)–(H4) to hold. Moreover, we
suppose that, for each x∈�,

ai; j(x) := Qi;j(x)

{i+j−1∑
k=1

�ci+j; k(x) − 2

}
− Pi;j(x)¿ 0; 26 i + j6M (23)

and

bi(x) :=
M∑
j=1

�si; j(x) − 2¿ 0; M ¡ i6 2M: (24)

Observe that (24) does not restrict the physical scope of applications since the sum
in (24) represents the number of daughter clusters being produced from a splitting
i-cluster. Also note that (23) implies a1;1 ≡ P1;1 ≡ 0 due to �c2;1 ≡ 2 (see (H3)). There-
fore, particles of size 1 do not interact implying, in particular, that (a; 0; : : : ; 0)∈RM

with a¿ 0 is an equilibrium for problem (∗).

Theorem 8. Let u0 ∈L+∞. In addition to (23) and (24) suppose that either

Ki; i(x)ai; i(x)¿ 0; 26 i6 [M=2]; K1; j(x)a1; j(x)¿ 0; 26 j6M − 1 (25)

and

Ki; i(x)b2i(x)¿ 0; [M=2]¡i6M; K1;M (x)bM+1(x)¿ 0 (26)

for all x∈ N�, or that for each i∈ {2; : : : ; M} there exists j∈ {1; : : : ; i − 1} with
�i; j(x)¿ 0; x∈ N�: (27)

Then, given any sequence tm ↗ ∞ and p∈ [1;∞), it holds

u1(· + tm; u0) → 1
|�|

M∑
i=1

i
∫
�
u0i dx in C(R+; Lp)

and

ui(· + tm; u0) → 0 in C(R+; Lp); 26 i6M:

Proof. DeFne N again by (20) and observe

N (0) +
M∑
i=1

∫ t

0

∫
�
fi(u) dx ds= N (t)6MN (0); t¿ 0: (28)
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Moreover, deFne ci(x)¿ 0 by

ci(x) :=
i−1∑
j=1

(
1 − j

i

)
�i; j(x); 26 i6M; x∈ N�

so that, due to (3),
M∑
i=1

fi(u) =’(u)
M∑
i=2

ciui +
1
2
’(u)

∑
26i+j6M

Ki;jai; juiuj

+
1
2
’(u)

∑
M¡i+j62M

Ki;jbi+juiuj: (29)

If (25) and (26) hold true, then it follows from (28) and (29)∫ ∞

0
’(u)

∫
�
u1uj dx ds6 c(u0); 26 j6M: (30)

On the other hand, (27) together with (28) and (29) yield∫ ∞

0
’(u)

∫
�
uj dx ds6 c(u0); 26 j6M;

whence (30), since (7) and u0 ∈L+∞ imply ui ∈L∞(R+; L∞(�)). Therefore, we have,
due to (30) and �c2;1 ≡ 2, for each T ¿ 0∫ T

0

∫
�
u1f1(u) dx ds =

∫ T

0
’(u)

∫
�

M∑
j=2

�j;1uju1 dx ds

+
1
2

∫ T

0
’(u)

∫
�

M∑
j=2

j−1∑
k=1

Kk;j−kQk;j−k�cj;1ukuj−ku1 dx ds

−
∫ T

0
’(u)

∫
�
u21

M−1∑
j=1

(P1; j + Q1; j)K1; juj dx ds

+
1
2

∫ T

0
’(u)

∫
�

2M∑
j=M+1

M∑
k=j−M

Kk;j−k�sj;1ukuj−ku1 dx ds

−
∫ T

0
’(u)

∫
�
u21K1;M uM dx ds

6 c(u0)
M∑
j=2

∫ T

0
’(u)

∫
�
uju1 dx ds

+
∫ T

0
’(u)

∫
�

(
1
2
�c2;1 − 1

)
K1;1Q1;1u31 dx ds

6 c(u0)
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with c(u0)¿ 0 independent of T ¿ 0. Take then u1 as a test function for

u̇ 1 − dBu1 = f1(u); t ¿ 0; u1(0) = u01;

in order to obtain

1
2

∫
�

|u1(T )|2 dx + d
∫ T

0

∫
�

|∇u1|2 dx ds

=
1
2

∫
�

|u01|2 dx +
∫ T

0

∫
�
u1f1(u) dx ds6 c(u0); (31)

where c(u0) does not depend on T ¿ 0. Given tm ↗ ∞ and p∈ [2;∞) large we can
choose a subsequence (tmk ) and Nu∈C([0; T ]; L+p) satisfying (13) such that

umk := u(· + tmk ; u
0) → Nu in C([0; T ]; Lp); (32)

due to Corollary 4. Estimate (31) entails in particular∫ T

0

∫
�

|∇umk
1 |2 dx ds=

∫ T+tmk

tmk

∫
�

|∇u1|2 dx ds → 0

and hence, by (32)

∇umk
1 → ∇ Nu 1 = 0 in L2((0; T ); L2(�;Rn)): (33)

On the other hand, (28) and (29) warrant Nu i(t) = 0 for 06 t6T and 26 i6M in
both of cases (25)–(27). Hence (33) and (13) imply

Nu 1(t) ≡ 1
|�|

M∑
i=1

i
∫
�
u0i dx; 06 t6T:

Since T ¿ 0 and p¡∞ were arbitrary, the assertion follows.

Remark 9. In the case of pure fragmentation and M = ∞ it has been proven in [21,
Corollary 4.3] that

u1(t) → 1
|�|

∞∑
i=1

i
∫
�
u0i dx in L1(�)

and

ui(t) → 0 in L1(�); i¿ 2:

4.3. The detailed balance condition

The purpose of this subsection is to study a very particular case of the
coagulation–fragmentation equations, namely when the kernels satisfy an extended ver-
sion of the so-called detailed balance condition (see (37)). This condition amounts to
assume that the processes under consideration are somehow reversible. For the di�usive
case without scattering and without shattering, related results were previously obtained
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in [15] if discrete processes are considered (see also [22] for the Becker–DMoring equa-
tions), whereas the continuous equations with di�usion were treated in [18]. For the
non-di�usive case we refer to [1,10,11,20,29,33].
We assume throughout this subsection that hypotheses (H1)–(H4) are satisFed and

that

the kernels �i; j ; �ci; j ; �
s
i; j ; Ki; j ; Pi; j ; and Qi;j are independent of x∈�: (34)

We consider merely binary breakage, that is

�i; j = �i; i−j; 16 j¡ i6M and (14)–(16) hold: (35)

Moreover, we suppose

�i;1¿ 0; 26 i6M (36)

and that there exists Hi ¿ 0, 16 i6M , such that

�i+j; iHi+j = Pi;jKi; jHiHj; 26 i + j6M;

�ci; jQk; i−kKk; i−kHkHi−k = �ci; kQj; i−jKj; i−jHjHi−j; 16 j; k ¡ i6M;

�si; jKk; i−kHkHi−k = �si; kKj; i−jHjHi−j; 16 i −M6 j; k6M: (37)

Let us observe that a possible choice of kernels is as follows.

Example 10. Let "; @∈R be arbitrary and suppose that Pi;j=Pj; i ¿ 0 and Qi;j=q(i+j)
are given for 16 i+j6M , where q is a non-negative function with Pi;j+q(i+j)6 1.
Putting

Ki;j := K∗(i + j)"; 16 i; j6M;

�i; j := �∗Pi−j; ji"−@(j(i − j))@; 16 j¡ i6M;

�ci; j := i(j(i − j))@
(

i−1∑
k=1

k1+@(i − k)@
)−1

; 16 j¡ i6M;

�si; j := i(j(i − j))@
(

M∑
k=i−M

k1+@(i − k)@
)−1

; 16 i −M6 j6M

for some K∗; �∗ ¿ 0, hypotheses (H3) and (H4) as well as (34)–(37) are satisFed with

Hi :=
�∗

K∗ i
@; 16 i6M:

For w∈L+p introduce

V (w) :=
M∑
i=1

∫
�
wi(x)

(
log

wi(x)
Hi

− 1
)

dx

with the convention r(log r − 1) := 0 for r=0, and observe that V (w) is well deFned
provided p¿ 1 due to the inequality

r|log r|6 c(3)(r1+3 + r1−3); r¿ 0; 3¿ 0: (38)
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Furthermore, set

J (a; b) :=




(a− b)(log a− log b); a; b¿ 0;

0; a= b= 0;

∞; else

and deFne D(v)∈R+ ∪ {∞} for v∈RM by

D(v) : =
1
2

∑
26i+j6M

J (�i+j; ivi+j; Pi; jKi; jvivj)

+
1
8

∑
26i+j6M

i+j−1∑
k=1

J (�ci+j; kQi; jKi; jvivj; �ci+j; iQk; i+j−kKk; i+j−kvkvi+j−k)

+
1
8

∑
M¡i+j62M

M∑
k=i+j−M

J (�si+j; kKi; jvivj; �si+j; iKk; i+j−kvkvi+j−k):

We Frst establish an auxiliary result stating in fact that V is a Lyapunov function for
(∗).

Proposition 11. Let (34)–(37) be satis<ed and assume 26p¡∞ with n¡ 2p. Then,
given u0 ∈L+p , it holds for u= u(·; u0)

V (u(t))6V (u(s)); t¿ s¿ 0: (39)

In addition,∫ ∞

0
’(u)

∫
�
D(u) dx dt ¡∞ (40)

and, for C := 2p=(p+ 1)∈ [ 43 ; 2),∫ ∞

0

(∫
�

|∇ui|C dx
)2=C

dt ¡∞; 16 i6M: (41)

Proof. For m¿max
√
Hi deFne u0;m = (u0;m1 ; : : : ; u0;mM ) by

u0;mi := min{m;max{u0i ; Hi=m}}; 16 i6M

and observe that Hi=m6 u0;mi 6m a.e. in � for all i∈ {1; : : : ; M}. It is then straight-
forward to check that

lim sup
m

V (u0;m)6V (u0): (42)

Furthermore, we have ‖u0;m‖p6 c(u0) with c(u0)¿ 0 independent of m. Hence,
Theorem 1 entails that

um := u(·; u0;m)∈C(R+; L+q ) ∩ L∞(R+; L∞); q¿max{2; 3n=4; p}
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is a strong Lq-solution with

‖um(t)‖p6 c(u0); t¿ 0: (43)

In addition, for T ¿ 0 arbitrary we may assume

um → u(·; u0) in C([0; T ]; Lp) and a:e: in (0; T ) × �; (44)

since u0;m → u0 in Lp. Thus, umi satisFes

u̇mi − dBumi ¿− cmumi a:e: in �; t ¿ 0

for some cm¿ 0, whence umi (t)¿ (Hi=m)e−cmt a.e. in � for t¿ 0. Due to this we may
take log ui=Hi as a test function in the ith equation of (CF). Then we derive from (3)
and (17) after some calculations that, for t ¿ 0,

V (um(t)) + d
M∑
i=1

∫ t

0

∫
�

1
umi

|∇umi |2 dx ds+
∫ t

0
’(um)

∫
�
D(um) dx ds= V (u0;m):

On the other hand, observing that

hr(z) := z
(
log

z
r

− 1
)
¿− r = hr(r); z¿ 0; r ¿ 0; (45)

it follows

V (um(t))¿− |�|
M∑
i=1

Hi:

Combining these two estimates and invoking (42) we derive
M∑
i=1

∫ T

0

∫
�

1
umi

|∇umi |2 dx ds+
∫ T

0
’(um)

∫
�
D(um) dx ds6 c(u0); (46)

where c(u0)¿ 0 does neither depend on m nor on T . In particular, owing to this
estimate, HMolder’s inequality, and (43) we have for C := 2p=(p+ 1)

M∑
i=1

∫ T

0

(∫
�

|∇umi |C dx
)2=C

ds6
M∑
i=1

∫ T

0
‖umi (s)‖p

∫
�

1
umi

|∇umi |2 dx ds

6 c(u0) (47)

with c(u0) independent of T and m. Hence, (∇umi )m is for each i∈ {1; : : : ; M} a
bounded sequence in L2((0; T ); LC(�;Rn)). From (44) we thus conclude that (∇umi )m
converges weakly towards ∇ui in L2((0; T ); LC(�;Rn)). Since T ¿ 0 was arbitrary, (47)
implies then (41). Furthermore, Fatou’s lemma, (44), and (42) entail that, for t¿ 0,

V (u(t; u0))6 lim inf
m

V (um(t))6 lim inf
m

V (u0;m)6V (u0);

whence (39) by virtue of u(t + s; u0) = u(t; u(s; u0)). Finally, since D is lower
semi-continuous, Fatou’s lemma, (44), and (46) also yield∫ T

0
’(u)

∫
�
D(u) dx ds6 lim inf

m

∫ T

0
’(um)

∫
�
D(um) dx ds6 c(u0):
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Theorem 12. Let (34)–(37) be satis<ed and assume 26p¡∞ with n¡ 2p. For
u0 ∈L+p choose "¿ 0 uniquely such that

M∑
i=1

iHi"i =
1

|�|
M∑
i=1

i
∫
�
u0i dx:

Then, given any sequence tm ↗ ∞, it holds

ui(· + tm; u0) → Hi"i in C(R+; Lp); 16 i6M:

Moreover, if u0 ∈L+∞, then also

V (u(t; u0)) → V (u") as t → ∞; (48)

where u" := (H1"; : : : ; HM"M ).

Proof. Put um := u(·+ tm; u0) and let T ¿ 0 be arbitrary. Due to Corollary 4 we have,
up to a subsequence,

um → Nu in C([0; T ]; Lp) and a:e: in �T := (0; T ) × � (49)

for some Nu∈C([0; T ]; L+p). From Fatou’s lemma and (40) we conclude

06
∫ T

0
’( Nu)

∫
�
D( Nu) dx dt6 lim inf

m

∫ T+tm

tm
’(u)

∫
�
D(u) dx dt = 0;

whence

D( Nu) = 0 a:e: in �T ; (50)

since ’ has no zeros. Next, (41) warrants, for 16 i6M and C := 2p=(p+ 1),∫ T

0

(∫
�

|∇umi |C dx
)2=C

dt =
∫ T+tm

tm

(∫
�

|∇ui|C dx
)2=C

dt → 0;

so that (∇umi ) converges towards ∇ Nu i=0 in L2((0; T ); LC(�;Rn)) for each i∈ {1; : : : ; M}
according to (49). In particular, Nu i does not depend on x∈� and, due to (50), (37),
and the continuity of Nu,

�i+j; i Nu i+j(t) = Pi;jKi; j Nu i(t) Nuj(t) =
�i+j; iHi+j

HiHj
Nu i(t) Nuj(t); 26 i + j6M

for 06 t6T . Recalling (36) and the fact that Nu satisFes (13), it therefore follows
Nu i(t) = Hi"i for t ∈ [0; T ] and i∈ {1; : : : ; M}. Hence, it remains to prove (48). For, let
u0 ∈L+∞. Then, due to (7), the sequence (u(tm; u0))m is bounded in L∞, so Lebesgue’s
theorem, (49) with Nu replaced by u", and (38) imply (48).

Remark 13. The above proof shows that, in addition, for C := 2p=(p+ 1),

ui(· + tm; u0) → Hi"i in L2; loc(R+; W 1
C (�)); 16 i6M:

We now focus on stability of the equilibria u" := (H1"; : : : ; HM"M ). For that purpose
deFne, for %¿ 0 and 26p6∞,

X+
%;p :=

{
w∈L+p ;

M∑
i=1

i
∫
�
wi dx = %

}
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and observe that X+
%;p is positively invariant according to Theorem 1 provided that

n¡ 2p. Moreover, for 16p6∞ put

dp(v; w) := ‖v − w‖p + |V (v) − V (w)|:

Remark 14. Given %¿ 0 choose " := "(%)¿ 0 with
M∑
i=1

iHi"i =
%

|�| : (51)

Then it follows from Theorems 1 and 12 that the equilibrium u" is a global attractor
in (X+

%;∞; dp) for each p∈ [1;∞).
In order to proceed, we need the following lemma.

Lemma 15. Let p¿ 2. For %¿ 0 choose " := "(%)¿ 0 such that (51) holds. Then
u" is the unique minimizer of V on X+

%;p. Moreover, given any minimizing sequence
(wm) of V in X+

%;p, it holds ‖wm − u"‖1 → 0.

Proof. It readily follows that u" is the unique minimizer of V on the set of all w∈L+1
satisfying V (w)¡∞ and

M∑
i=1

i
∫
�
wi dx = % (52)

— and hence also on X+
%;p— by observing that

V (w) − V (u") =
M∑
i=1

‖hu"i (wi) − hu"i (u
"
i )‖1;

where hu"i is deFned as in (45). Moreover, given any sequence (wm) in X+
%;p with

limm V (wm)=V (u"), we may assume for 16 i6M that (hu"i (w
m
i )) converges towards

hu"i (u
"
i ) almost everywhere in �, whence (wm

i ) converges towards u"i almost every-
where in � for 16 i6M due to the properties of hu"i . On the other hand, it follows
analogously to [18, Lemma 3.1] that, for any measurable subset E of � and any E¿ e2,

M∑
i=1

∫
E
wm
i dx6

2
log E

V (wm) + 2
( |�|
log E

+ E|E|
) M∑

i=1

Hi; m∈N:

The Dunford–Pettis theorem (see [16, Theorem 4.21.2]) then guarantees the exis-
tence of a subsequence (mk) such that (wmk ) converges weakly in L1 towards some
w∈L+1 satisfying (52). Since V :L1(�;RM ) → R ∪ {∞} is weakly sequentially lower
semi-continuous due to its convexity and Fatou’s lemma, we therefore have

V (w)6 lim inf
mk

V (wmk ) = V (u");

whence w = u". Consequently, (wmk ) converges towards u" weakly in L1 and almost
everywhere in �. This implies the assertion.

We conclude with the following corollary on stability of the equilibria u".
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Corollary 16. For %¿ 0 choose " := "(%)¿ 0 such that (51) holds.
(i) For 26p¡∞ with n¡ 2p, the equilibrium u" is stable in (X+

%;p; d1), that is,
given any 3¿ 0 there exists G¿ 0 such that d1(u(t; u0); u")¡3 for t¿ 0, whenever
u0 ∈X+

%;p satis<es d1(u
0; u")¡G.

(ii) The equilibrium u" is asymptotically stable in (X+
%;∞; d1).

Proof. It follows from Lemma 15 that, for any 3¿ 0 small, there exists 2(3)¿ 0 such
that V (w)−V (u")¿ 2(3) provided w∈X+

%;p with ‖w−u"‖1 = 3. Hence, [6, Proposition
4.3] and (39) imply (i). Finally, statement (ii) is a consequence of (i) and Remark
14.
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