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ABSTRACT. Existence of strong solutions to a nonlocal semilinear heat equation is shown. The main feature of the equation is
that the nonlocal term depends on the unknown on the whole time interval of existence, the latter being given a priori. The proof
relies on Schauder’s fixed point theorem and semigroup theory.

1. INTRODUCTION

This note is dedicated to the nonlocal problem

∂tu−∆u+ ϕ

(∫ T

0

u(s) ds

)
u = 0 , (t, x) ∈ (0, T ]× Ω , u|∂Ω = 0 , u(0) = u0 , (1.1)

with given potential ϕ, given initial datum u0, and given existence time T > 0, and where Ω ⊂ Rn, n ≥ 1, is a bounded
C2-domain. Equation (1.1) arises in the modeling of a biological nanosensor in the chaotic dynamics of a polymer chain
in an aqueous solution and has been introduced and considered in [5–7]. We refer to these papers for more information
on the modeling background.

Clearly, the main feature of (1.1) is that the nonlinearity depends on

uT :=

∫ T

0

u(s) ds ,

that is, on the unknown on the whole interval of existence [0, T ], where T > 0 is a priori given and not free to be chosen.
The problem itself is thus not an evolution problem in the usual sense as it does not satisfy the Volterra property since a
solution at a time instant depends also on later times, i.e. on the future. Equations violating the Volterra property arise, of
course, also in other contexts, e.g. in certain reaction-diffusion equations with non-local initial conditions [2,3], in models
for long-term weather forecast (see [4] and the references therein), or in the study of stationary solutions to population
models including age- and spatial structure (e.g. see [8, 9]) to name but a few.

In [7] (see also [6]) the existence of weak solutions to (1.1) is shown assuming a non-negative continuous potential ϕ
for which s 7→ ϕ(s)s is differentiable and non-decreasing. Herein we provide a simple and short proof for the existence
of strong solutions under fairly general assumptions on the potential ϕ. In particular, we do not use a differentiability or
monotonicity assumption. More precisely, we shall prove the following result:

Theorem 1.1. Let ϕ ∈ C(R,R) be non-negative and 2p > n. If either

(i) u0 ∈ L∞(Ω)

or

(ii) ϕ(s) ≤ a(1 + |s|), s ∈ R, for some a > 0 and u0 ∈ Lp(Ω),
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then there is at least one strong solution

u ∈ C
(
[0, T ], Lp(Ω)

)
∩ C1

(
(0, T ], Lp(Ω)

)
∩ C

(
(0, T ],W 2

p (Ω)
)

to (1.1). Moreover, ‖u(t)‖p ≤ ‖u0‖p for t ∈ [0, T ]. If u0 ≥ 0, then u(t) ≥ 0 for t ∈ [0, T ].

The proof is an application of Schauder’s fixed point theorem based on the fact that, under suitable assumptions, the
operator A(uT ) := −∆D + ϕ(uT ) generates a semigroup (e−tA(uT ))t≥0 on Lp(Ω), where −∆D denotes the Laplacian
subject to Dirichlet boundary conditions. Solutions to (1.1) are thus of the form

u(t) = e−tA(uT )u0 , t ∈ [0, T ] ,

and, consequently, uT satisfies the fixed point equation

uT =

∫ T

0

e−tA(uT )u0 dt . (1.2)

As for uT , we derive further information.

Corollary 1.2. Let u be the solution to (1.1) provided by Theorem 1.1. If p ≥ 2, then

‖∇uT ‖22 +

∫
Ω

ϕ(uT )|uT |2 dx =

∫
Ω

(
u0 − u(T )

)
uT dx ≤ 2T‖u0‖22 .

If u0 ∈Wα
p (Ω) for some α > 0, then uT ∈W 2

p (Ω) satisfies

−∆uT + ϕ(uT )uT = u0 − u(T ) in Ω , uT = 0 on ∂Ω . (1.3)

In the next section we shall prove Theorem 1.1. As an immediate consequence we obtain Corollary 1.2. We shall
also prove in Proposition 4.1 the uniqueness of solutions to (1.1) for small initial values or small maximal existence time
provided the potential ϕ is Lipschitz.

The subsequent proofs equally work for similar equations, e.g. with Neumann boundary conditions. Moreover, using
the fact that the heat semigroup (subject to Dirichlet boundary conditions) has exponential decay, the case T =∞ can be
treated the same way.

2. PROOF OF THEOREM 1.1

We let L(E,F ) denote the space of bounded linear operators between two Banach spaces E and F with norm
‖ · ‖L(E,F ) and L(E) := L(E,E). The norm e.g. in E is denoted by ‖ · ‖E and ‖ · ‖q := ‖ · ‖Lq(Ω) for q ∈ [1,∞]. Given
p ∈ (1,∞) we use the notation

Wα
p,D(Ω) :=


{u ∈Wα

p (Ω) ; u = 0 on ∂Ω} if α ∈
(

1
p , 2
]
,

Wα
p (Ω) if 0 ≤ α < 1

p .

Moreover, for ω > 0 and κ ≥ 1, letH(W 2
p,D(Ω), Lp(Ω);κ, ω) be the set of allA ∈ L(W 2

p,D(Ω), Lp(Ω)) such that ω+A
is an isomorphism from W 2

p,D(Ω) onto Lp(Ω) satisfying the resolvent estimates

1

κ
≤

‖(µ+A)z‖Lp(Ω)

|µ| ‖z‖Lp(Ω) + ‖z‖W 2
p,D(Ω)

≤ κ , Reµ ≥ ω , z ∈W 2
p,D(Ω) \ {0} .

Then A ∈ H(W 2
p,D(Ω), Lp(Ω);κ, ω) implies that A ∈ H(W 2

p,D(Ω), Lp(Ω)); that is, −A generates an analytic semi-
group (e−tA)t≥0 on Lp(Ω) with domain W 2

p,D(Ω), see [1, I.Theorem 1.2.2]. Recall that −∆D ∈ H(W 2
p,D(Ω), Lp(Ω)).
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Proof of Theorem 1.1, Part (i). Assume that ϕ ∈ C(R,R) is non-negative and u0 ∈ L∞(Ω). Since ϕ is then uniformly
continuous and bounded on bounded sets, it follows that (considered as Nemytskii operator)

ϕ ∈ C
(
L∞(Ω), L∞(Ω)

)
is bounded on bounded sets . (2.1)

Set S0 := T‖u0‖∞ and let
XT := B̄L∞(Ω)(0, S0)

denote the closed ball in L∞(Ω) of radius S0 centered at the origin. Fix 2p ∈ (n,∞) and note that, given any uT ∈ XT ,
the mapping ϕ(uT ) := [w 7→ ϕ(uT )w] ∈ L

(
Lp(Ω)

)
obviously satisfies

‖ϕ(uT )‖L(Lp(Ω)) ≤ ‖ϕ(uT )‖∞ ≤ max
[−S0,S0]

ϕ , uT ∈ XT . (2.2)

We now infer from the fact that −∆D ∈ H(W 2
p,D(Ω), Lp(Ω)) and the perturbation result [1, I.Theorem 1.3.1] that

A(uT ) := −∆D + ϕ(uT ) ∈ H(W 2
p,D(Ω), Lp(Ω);κ, ω(S0)) (2.3)

for some ω(S0) > 0 and κ ≥ 1. Moreover, since ϕ is non-negative, we have that−A(uT ) generates a positive contraction
semigroup (e−tA(uT ))t≥0 on each Lq(Ω) for q ∈ (1,∞] (which, however, is not strongly continuous for q =∞), hence

‖e−tA(uT )‖L(Lq(Ω)) ≤ 1 , t ≥ 0 , q ∈ (1,∞] . (2.4)

Now, let us define

Φ(uT ) :=

∫ T

0

e−tA(uT )u0 dt , uT ∈ XT . (2.5)

Then (2.4) implies that

‖Φ(uT )‖∞ ≤
∫ T

0

‖e−tA(uT )‖L(L∞(Ω)) ‖u0‖∞ dt ≤ T‖u0‖∞ = S0 , uT ∈ XT ,

so that Φ : XT → XT . Choose 2α ∈ (n/p, 2) and note that (2.3) together with [1, II.Lemma 5.1.3] yield that there are
M(S0) ≥ 1 and ν(S0) > 0 such that

‖e−tA(uT )‖L(Lp(Ω),W 2α
p,D(Ω)) ≤M(S0)eν(S0)tt−α , t > 0 , uT ∈ XT . (2.6)

Therefore,

‖Φ(uT )‖W 2α
p,D(Ω) ≤

∫ T

0

‖e−tA(uT )‖L(Lp(Ω),W 2α
p,D(Ω)) ‖u0‖p dt ≤ M(S0)

1− α
eν(S0)TT 1−α‖u0‖p ≤ c(S0) , (2.7)

and we conclude that Φ(XT ) is bounded in W 2α
p,D(Ω), the latter being compactly embedded in C(Ω̄) since 2α > n/p.

In order to prove the continuity of Φ let us observe that, given uT , vT ∈ XT , we have

e−tA(uT ) − e−tA(vT ) = −
∫ t

0

d

ds
e−(t−s)A(uT )e−sA(vT ) ds

= −
∫ t

0

e−(t−s)A(uT )
(
ϕ(uT )− ϕ(vT )

)
e−sA(vT ) ds , (2.8)

so that, using (2.2), (2.4), and (2.6),

‖e−tA(uT ) − e−tA(vT )‖L(Lp(Ω),W 2α
p,D(Ω))

≤
∫ t

0

‖e−(t−s)A(uT )‖L(Lp(Ω),W 2α
p,D(Ω)) ‖ϕ(uT )− ϕ(vT )‖L(Lp(Ω)) ‖e−sA(vT )‖L(Lp(Ω)) ds (2.9)

≤ c(S0) ec(S0)T t1−α ‖ϕ(uT )− ϕ(vT )‖∞ . (2.10)
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Due to the continuous embedding of W 2α
p,D(Ω) in C(Ω̄) we derive that

‖Φ(uT )− Φ(vT )‖∞ ≤ c ‖Φ(uT )− Φ(vT )‖W 2α
p,D(Ω) ≤ c

∫ T

0

‖e−tA(uT ) − e−tA(vT )‖L(Lp(Ω),W 2α
p,D(Ω))‖u0‖p dt

≤ c1(S0)‖ϕ(uT )− ϕ(vT )‖∞
for uT , vT ∈ XT , hence the continuity of Φ : XT → XT due to (2.1). Consequently, Φ ∈ C(XT , XT ) with precompact
image so that Schauder’s fixed point theorem implies the existence of uT ∈ XT such that uT = Φ(uT ). We define

u(t) := e−tA(uT )u0 , t ∈ [0, T ] , (2.11)

in order to obtain a solution to (1.1). If u0 ≥ 0, then u(t) ≥ 0 for t ∈ [0, T ] since the semigroup is positive. This yields
part (i) of Theorem 1.1.

Proof of Theorem 1.1, Part (ii). Now assume that ϕ ∈ C(R,R) is non-negative and that ϕ(s) ≤ a(1 + |s|), s ∈ R, for
some a > 0. Consider u0 ∈ Lp(Ω) with 2p > n. We then adapt the prove above. Set now S0 := T‖u0‖p and

XT := B̄Lp(Ω)(0, S0) .

Observe that the assumptions on ϕ entail
ϕ ∈ BC

(
XT , Lp(Ω)

)
. (2.12)

Noticing thatW 2−2ε
p,D (Ω) embeds continuously inC(Ω̄) for ε > 0 small enough since 2p > n, we have, forw ∈W 2

p,D(Ω),

‖ϕ(uT )w‖p ≤ c ‖ϕ(uT )‖p ‖w‖W 2−2ε
p,D (Ω) (2.13)

≤ c ‖ϕ(uT )‖p ‖w‖εp ‖w‖1−εW 2
p,D(Ω)

≤ c(δ) ‖ϕ(uT )‖1/εp ‖w‖p + δ‖w‖W 2
p,D(Ω)

with δ > 0 arbitrarily small. Hence, (2.12) and [1, I.Theorem 1.3.1] ensure that (2.3) holds true again. Moreover, (2.4)
holds for q = p. Defining Φ as in (2.5), we argue as in part (i) to deduce that Φ ∈ C(XT , XT ) has a precompact image,
where the continuity follows from the fact that (2.8) along with (2.4), (2.6), and (2.13) ensure

‖e−tA(uT ) − e−tA(vT )‖L(Lp(Ω))

≤
∫ t

0

‖e−(t−s)A(uT )‖L(Lp(Ω)) ‖ϕ(uT )− ϕ(vT )‖L(W 2−2ε
p,D (Ω),Lp(Ω)) ‖e

−sA(vT )‖L(Lp(Ω),W 2−2ε
p,D (Ω)) ds

≤ c(S0) ‖ϕ(uT )− ϕ(vT )‖p .
The assertion then again follows by applying Schauder’s fixed point theorem.

3. PROOF OF COROLLARY 1.2

Let u be the solution to (1.1) provided by Theorem 1.1. If p ≥ 2, then∫ T

s

u(σ) dσ ∈W 2
2,D(Ω)

for s ∈ (0, T ) due to the regularity of the solution u. Testing (1.1) by this quantity and letting then s→ 0+ yields

‖∇uT ‖22 +

∫
Ω

ϕ(uT )|uT |2 dx =

∫
Ω

(
u0 − u(T )

)
uT dx ≤ ‖u0 − u(T )‖2 ‖uT ‖2 . (3.1)

Now, (2.4) along with (2.11) respectively (1.2) entail

‖u(T )‖2 ≤ ‖u0‖2 , ‖uT ‖2 ≤ T‖u0‖2 ,
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hence

‖∇uT ‖22 +

∫
Ω

ϕ(uT )|uT |2 dx ≤ 2T‖u0‖22 .

If u0 ∈Wα
p (Ω) for some α > 0, then (1.2) implies uT ∈W 2

p,D(Ω) since

‖e−tA(uT )‖L(Wα
p,D(Ω),W 2

p,D(Ω)) ≤M(S0)eν(S0)ttα/2−1 , t > 0 ,

due to [1, II.Lemma 5.1.3]. Integrating (1.1) with respect to t ∈ (0, T ) then gives (1.3). This proves Corollary 1.2.

4. UNIQUENESS FOR SMALL DATA

As noticed in [7] one can prove the uniqueness of solutions to (1.1) if S0 := T‖u0‖∞ is small provided that, in
addition,

ϕ : R→ R is locally Lipschitz continuous (4.1)

and
s 7→ ϕ(s)s is non-decreasing . (4.2)

Indeed, suppose the conditions of Theorem 1.1 (i) with p ≥ 2 and let (4.1) and (4.2) hold true. Consider two solutions u
and v to (1.1) with u(0) = v(0) = u0 ∈ L∞(Ω) and set wT := uT − vT . Then

‖ϕ(uT )− ϕ(vT )‖2 ≤ L(S0) ‖uT − vT ‖2 = L(S0) ‖wT ‖2 (4.3)

for some constant L(S0) since (4.1) implies that ϕ is uniformly Lipschitz on the set [−S0, S0]. The same argument leading
to (3.1) entails that

‖∇wT ‖22 = −
∫

Ω

(
ϕ(uT )uT − ϕ(vT )vT

) (
uT − vT

)
dx+

∫
Ω

(
v(T )− u(T )

)
wT dx

≤ ‖v(T )− u(T )‖2 ‖wT ‖2 ,
(4.4)

since (4.2) implies that the first integral is non-positive. Now, owing to (2.8), (2.4), and (4.3) we have

‖v(T )− u(T )‖2 =
∥∥(e−tA(uT ) − e−tA(vT )

)
u0
∥∥

2

≤
∫ T

0

∥∥e−(t−s)A(uT )
∥∥
L(L2(Ω))

‖ϕ(uT )− ϕ(vT )‖2
∥∥e−sA(vT )

∥∥
L(L∞(Ω))

‖u0‖∞ ds

≤ S0 L(S0) ‖wT ‖2 .

(4.5)

Therefore, (4.4) and (4.5) entail that

‖∇wT ‖22 ≤ S0 L(S0) ‖wT ‖22 ≤ c(Ω)S0 L(S0) ‖∇wT ‖22 ,

where c(Ω) is the constant from Poincaré’s inequality. Now, if c(Ω)S0L(S0) < 1, then wT ≡ 0 in Ω, hence uT = vT
which readily implies that the solutions u and v coincide.

However, the monotonicity condition (4.2) is not needed to prove uniqueness of solutions to (1.1) for small data as is
shown in the next proposition. Moreover, in order to prove existence and uniqueness of solutions to (1.1) we also do not
need a sign or growth condition on ϕ in this particular case and only impose the Lipschitz condition (4.1).

Proposition 4.1. Let ϕ satisfy (4.1), let 2p > n, and consider u0 ∈ Lp(Ω). There is R > 0 such that (1.1) has a unique
solution

u ∈ C
(
[0, T ], Lp(Ω)

)
∩ C1

(
(0, T ], Lp(Ω)

)
∩ C

(
(0, T ],W 2

p (Ω)
)

provided that T‖u0‖p ≤ R.
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Proof. We use Banach’s fixed point theorem. For this fix 2α ∈ (n/p, 2), let S0 > 0, and put

XT := B̄W 2α
p,D(Ω)(0, S0) .

Note that W 2α
p,D(Ω) embeds continuously into C(Ω̄). Thus, since ϕ is uniformly Lipschitz continuous on compact sets,

there is a constant L(S0) > 0 such that ϕ (considered as Nemytskii operator) satisfies

‖ϕ(uT )− ϕ(vT )‖∞ ≤ L(S0) ‖uT − vT ‖W 2α
p,D(Ω) , uT , vT ∈ XT . (4.6)

In particular, since ‖ϕ(uT )‖∞ ≤ c(S0), it follows as in the proof of part (i) of Theorem 1.1 that [1, I.Theorem 1.3.1]
and [1, II.Lemma 5.1.3] imply (2.3) and (2.6). The latter entails, as in (2.7), that

‖Φ(uT )‖W 2α
p,D(Ω) ≤

M(S0)

1− α
eν(S0)TT 1−α‖u0‖p . (4.7)

Moreover, (2.10) along with (4.6) also yield

‖e−tA(uT ) − e−tA(vT )‖L(Lp(Ω),W 2α
p,D(Ω)) ≤ c(S0) ec(S0)T t1−α ‖uT − vT ‖W 2α

p,D(Ω) , uT , vT ∈ XT ,

for some c(S0) > 0. Therefore

‖Φ(uT )− Φ(vT )‖W 2α
p,D(Ω) ≤

∫ T

0

‖e−tA(uT ) − e−tA(vT )‖L(Lp(Ω),W 2α
p,D(Ω)) ‖u0‖p dt

≤ c1(S0) ec(S0)T T 2−α ‖u0‖p ‖uT − vT ‖W 2α
p,D(Ω) .

Together with (4.7) this shows that Φ : XT → XT is a contraction provided that T‖u0‖p is small enough. Consequently,
there exists a unique uT ∈ XT with Φ(uT ) = uT if T‖u0‖p is small enough. �
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