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Abstract. Continuous coagulation-fragmentation processes with diffusion are
studied. It is shown that the parameter dependent diffusion term d(y)∆ generates an
analytic semigroup in suitable state spaces even for unbounded diffusion coefficients
d(y). This yields existence and uniqueness of local-in-time smooth solutions that are
global for small initial values in the absence of fragmentation.

1. Introduction

In the present paper we demonstrate how to extend a recent result of H. Amann
and the author on diffusive continuous coagulation-fragmentation equations [4] to
the case of unbounded diffusion coefficients. Recall that these equations describe
the time evolution of a system of a large number of particles that may change size
due to coalescence or breakage. The mechanism leading to aggregation is assumed
to be governed merely by Brownian motion. Applications of these processes can
be found in various scientific and industrial disciplines, such as biology, physics,
chemistry, or oil industry (e.g., see [9] and the references therein).

More precisely, denoting by y the particle size and by u = u(y) = u(t, y, x) the
particle size distribution function at time t and position x, the continuous version
of the diffusive coagulation-fragmentation equations reads as

∂tu(y) − d(y)∆xu(y) = L[u](y) in Ω , t > 0 , y ∈ (0, y0) ,

∂νu(y) = 0 on ∂Ω , t > 0 , y ∈ (0, y0) ,

u(0, y, ·) = u0(y) in Ω , y ∈ (0, y0) .

(1.1)

Here Ω ⊂ R
n is a bounded domain with smooth boundary ∂Ω and u0 = u0(y, x) is

a given initial distribution. The right hand side

L[u] := Lb[u] + Lc[u, u] + Ls[u, u]

consists of the integral operators

Lb[u](y) :=

∫ y0

y

γ(y′, y) u(y′) dy′ − u(y)

∫ y

0

y′

y
γ(y, y′) dy′ ,

1
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Lc[u, v](y) :=
1

2

∫ y

0

K(y′, y − y′) P (y′, y − y′) u(y − y′) v(y′) dy′

+
1

2

∫ y0

y

∫ y′

0

K(y′′, y′ − y′′) Q(y′′, y′ − y′′)

× βc(y
′, y) u(y′′) v(y′ − y′′) dy′′dy′

−u(y)

∫ y0−y

0

K(y, y′)
{

P (y, y′) + Q(y, y′)
}

v(y′) dy′ ,

Ls[u, v](y) :=
1

2

∫ 2y0

y0

∫ y0

y′−y0

K(y′′, y′ − y′′) βs(y
′, y) u(y′′) v(y′ − y′′) dy′′dy′

−u(y)

∫ y0

y0−y

K(y, y′) v(y′) dy′ ,

for y ∈ (0, y0), where Lb, Lc, and Ls account for the formation and depletion of par-
ticles due to spontaneous breakage, coalescence and collisional breakage, and due
to scattering, respectively. We refer to [4], [13] for a precise definition of the kernels
and a more detailed interpretation of the above terms. By Y := (0, y0) we denote
the admissible range for particle sizes, which is either unbounded if particles are
allowed to become arbitrarily large, that is, if y0 = ∞, or bounded if y0 ∈ (0,∞).
In the former case of the classical coagulation-fragmentation model, the scattering
operator Ls is identically zero. As in [4] we treat both cases simultaneously.

We refrain from recalling the present state of research on continuous coagulation
fragmentation processes with diffusion, but refer instead to [2], [4], [5], [8], [13] and
the references therein. It has been shown in [4] that the above system of equati-
ons possesses a unique smooth solution locally in time, which preserves the total
mass. Moreover, this solution exists globally for small initial values provided that
the linear fragmentation terms are neglected. These results rely on the fact that
the analytic semigroup generated by the size-dependent diffusion term d(y)∆x on
the state spaces L1(Y,Lp(Ω)), 1 ≤ p < ∞, has smoothing properties. The basic
assumption in [4] for the generation result and the regularizing effects is that the
diffusion coefficients satisfy a bound of the form

0 < d⋆ ≤ d(y) ≤ d⋆ < ∞ , y ∈ Y .

The main motivation for the present paper is to relax this restriction in order to
include unbounded coefficients. We will show that neither the upper nor the lower
bound for the diffusion coefficients is necessary to obtain the generation result. Ne-
vertheless, we point out that the lower bound d⋆ > 0 is crucial in our analysis to
guarantee existence of smooth solutions. This bound provides a suitable control for
the time singularities arising from the regularizing effects.

2. The Diffusion Semigroup

We briefly recall the most important notations and abbreviations already used in
[4] and refer to [4] for more details. The abbreviation Lp := Lp(Ω) stands for the
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Lebesgue spaces and Hµ
p,B := Hµ

p,B(Ω) for the Bessel potential spaces including
Neumann boundary condition (if meaningful). For p ∈ [1,∞) we denote by ∆p the
(well-defined) closure in Lp of the linear operator ∆ |C2(Ω̄) subject to Neumann

boundary conditions, which generates a positive analytic semigroup {et∆p ; t ≥ 0}
of contractions on Lp. The domain of ∆p equals H2

p,B provided p > 1. Since the

restriction of et∆1 to Lp coincides with et∆p , we may put ∆ := ∆1 and obtain the
estimates

‖et∆‖L(Lp,Hα

q,B
) ≤ c (1 ∧ t)−

n

2
( 1

p
− 1

q
)−α

2 , t > 0 , (2.1)

for α ∈ [0, 2] \ {1 + 1/q} and 1 ≤ p ≤ q ≤ ∞, where q ∈ (1,∞) if α > 0, and also

‖et∆‖L(Hα

p,B
,Hµ

p,B
) ≤ c (1 ∧ t)−

µ−α

2 , t > 0 , (2.2)

for 1 < p < ∞ and 0 ≤ α ≤ µ ≤ 2 with α, µ 6= 1 + 1/p.

We then set

Lp := L1

(

Y,Lp, (1 + y)dy
)

, 1 ≤ p ≤ ∞ ,

and

H
α
p,B := L1

(

Y,Hα
p,B, (1 + y)dy

)

, 1 < p < ∞ , α ∈ [0, 2] \ {1 + 1/p} ,

with the convention H
0
p,B := Lp for p ∈ {1,∞}. By L

+
p we denote the positive cone

of Lp.

Throughout this paper we assume for the diffusion coefficients that

d ∈ L1,loc(Y, (0,∞)) (2.3)

and that there exists d⋆ with

d(y) ≥ d⋆ > 0 , y ∈ Y . (2.4)

If d satisfies (2.3), we define for each p ∈ [1,∞) an operator Ap by virtue of

(Apu)(y) := −d(y)∆pu(y) , a.e. y ∈ Y ,

for

u ∈ D(Ap) := {u ∈ Lp ; u(y) ∈ D(∆p) for a.e. y ∈ Y , d(·)∆pu ∈ Lp} .

Observe then that, provided d additionally satisfies (2.4), the continuous injections

L1

(

Y,H2
p,B, d(y)(1 + y)dy

)

→֒ D(Ap) →֒ H
2
p,B , p ∈ (1,∞) , (2.5)

hold. Finally, let the projection P ∈ L(Lp) be defined by

Pu :=
1

|Ω|

∫

Ω

u(·, x) dx , u ∈ Lp , 1 ≤ p < ∞ ,
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so that the space Lp has the direct sum decomposition

Lp = P(Lp) ⊕ (1 − P)(Lp) . (2.6)

Note that P(Lp) = L1(Y, (1 + y)dy) ⊂ Lp. We put L
•
p := (1 − P)(Lp) to shorten no-

tation.

Now we can prove analogous statements to [4, Thm.2, Prop.3] for diffusion coef-
ficients obeying (2.3) and (2.4).

Theorem 2.1. Suppose d satisfies (2.3) and (2.4). Then −Ap generates a positive
strongly continuous analytic semigroup of contractions on Lp for each p ∈ [1,∞).
It is given by

(e−tApu)(y) = etd(y)∆pu(y) , a.e. y ∈ Y , t ≥ 0 , u ∈ Lp , (2.7)

and it holds that Ap ⊃ Aq for 1 ≤ p < q < ∞. Furthermore, the estimates

‖e−tAp‖L(Lp,Hα

q,B
) ≤ c(T ) t−

n

2
( 1

p
− 1

q
)−α

2 , 0 < t ≤ T , (2.8)

for α ∈ [0, 2] \ {1 + 1/q} and 1 ≤ p ≤ q ≤ ∞, where q ∈ (1,∞) if α > 0, and

‖e−tAp‖L(Hα

p,B
,Hµ

p,B
) ≤ c(T ) t−

µ−α

2 , 0 < t ≤ T , (2.9)

for 1 < p < ∞ and 0 ≤ α ≤ µ ≤ 2 with α, µ 6= 1 + 1/p are valid. Moreover, for
1 ≤ p < ∞, (2.6) decomposes e−tAp into

e−tAp = 1 ⊕
(

e−tAp |L•
p

)

, t ≥ 0 ,

and there exists ω0 > 0 such that, for 1 < p < q ≤ ∞ and some M := M(p, q) > 0,

‖e−tAp |L•
p
‖L(L•

p
,L•

q
) ≤ M e−ω0t t−

n

2
( 1

p
− 1

q
) , t > 0 . (2.10)

Proof. Fix 1 ≤ p < ∞. Analogously to [4, Lem.9] one shows that the tensor product
D(Y ) ⊗ D(Ω) is dense in Lp, where D(X) denotes the test functions on an open
subset X ⊂ R

m. Due to (2.3), D(Y ) ⊗ D(Ω) is contained in the domain of Ap.
Therefore, Ap is densely defined. That it is a closed operator in Lp follows from the
fact that d(y)∆p is closed in Lp for a.e. y ∈ Y . Next we write Lp = R · 1⊕L•

p with
L•

p := (1 − P)(Lp) as in the proof of [4, Prop.3], which then decomposes ∆p into
∆p = 0 ⊕ ∆•

p. Hereby, ∆•
p := ∆p |D(∆p)∩L•

p
generates an analytic semigroup

{et∆•

p = et∆p |L•
p
; t ≥ 0}

on L•
p and

[Rez ≥ −ω] ⊂ ̺(∆•
p) = ̺(∆p) ∪ {0}

for some ω > 0, where ̺(∆•
p) and ̺(∆p) denote the resolvent sets of the operators

∆•
p and ∆p, respectively. Therefore, there exist N ≥ 1 and a number α ∈ (π/2, π)

such that
Σα := {z ∈ C \ {0} ; | arg z| < α} ⊂ ̺(∆•

p)
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and

‖(λ − ∆•
p)

−1‖L(L•
p
) ≤

N

|λ|
, λ ∈ Σα .

Observing the resolvent decomposition

(λ − d(y)∆p)
−1 = d(y)−1

(

λ

d(y)
− ∆p

)−1

= d(y)−1

[

d(y)

λ
⊕

(

λ

d(y)
− ∆•

p

)−1
]

for λ ∈ Σα and a.e. y ∈ Y , we derive

‖(λ − d(y)∆p)
−1‖L(Lp) ≤

N ′

|λ|
, λ ∈ Σα , a.e. y ∈ Y,

for some N ′ ≥ 1. Clearly, this implies that Σα belongs to the resolvent set of the
operator −Ap and that the resolvent is given by

(

(λ + Ap)
−1u

)

(y) = (λ − d(y)∆p)
−1u(y) , a.e. y ∈ Y , u ∈ Lp , λ ∈ Σα .

Hence we deduce that

‖(λ + Ap)
−1‖L(Lp) ≤

N ′

|λ|
, λ ∈ Σα ,

so that well-known generation results (e.g. [6, Thm.4.2.1]) then ensure that −Ap

is the generator of a strongly continuous analytic semigroup on Lp for 1 ≤ p < ∞.
Moreover, from [7, Thm.11.6.6] we infer (2.7). Consequently, the semigroup genera-
ted by −Ap is a positive semigroup of contractions and satisfies the estimates (2.8)
and (2.9) in view of (2.1), (2.2) and assumption (2.4). Finally, that e−tAp leaves
both of the the spaces P(Lp) and L

•
p invariant and that the estimate (2.10) holds

can be shown exactly as in the proof of [4, Prop.3].

Remark 2.2. Observe that (2.4) is required for the estimates (2.8)-(2.10) but not
for the analyticity of the semigroup {e−tAp ; t ≥ 0}.

3. Well-Posedness

In the sequel, for ϑ ≥ 0 given, we say that hypothesis H(ϑ) is satisfied provided
that

(H1) K is a non-negative symmetric function defined on Y × Y and there is k > 0
such that

K(y, y′)
(

d(y + y′)ϑ + d(y)ϑ
)

≤ k , (y, y′) ∈ Y × Y .

P and Q are non-negative and symmetric functions belonging to L∞(Ξ),
where Ξ := {(y, y′) ∈ Y × Y ; y + y′ ∈ Y } , such that

0 ≤ P (y, y′) + Q(y, y′) ≤ 1 for a.e. (y, y′) ∈ Ξ .
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(H2) γ is a measurable function from {(y, y′) ; 0 < y′ < y < y0} into R
+ such that

there exists mγ > 0 with

∫ y

0

d(y′)ϑγ(y, y′) dy′ + d(y)ϑ

∫ y

0

y′

y
γ(y, y′) dy′ ≤ mγ for a.e. y ∈ Y .

(H3) βc is a non-negative measurable function on {(y, y′) ; 0 < y′ < y < y0} such
that

Q(y, y′)

(

∫ y+y′

0

y′′βc(y + y′, y′′) dy′′ − y − y′

)

= 0 for a.e. (y, y′) ∈ Ξ ,

and there exists mc > 0 with

Q(y, y′)

∫ y+y′

0

d(y′′)ϑβc(y + y′, y′′) dy′′ ≤ mc for a.e. (y, y′) ∈ Ξ .

(H4) βs is a measurable function from (y0, 2y0) × (0, y0) into R
+ such that

∫ y0

0

y′′βs(y + y′, y′′) dy′′ = y + y′ for a.e. y + y′ ∈ (y0, 2y0) ,

and there exists ms > 0 with
∫ y0

0

d(y′′)ϑβs(y + y′, y′′) dy′′ ≤ ms for a.e. y + y′ ∈ (y0, 2y0) .

Clearly, hypothesis H(ϑ) with ϑ ≥ 0 implies hypothesis H(0) in view of (2.4).
Let us mention right now that H(ϑ) ensures ’the gain of integrability’ (see [12,
Lem.2.6])

L[u] ∈ L1

(

Y, d(y)ϑ(1 + y)dy
)

for u ∈ L1(Y, (1 + y)dy) . (3.1)

Also note that hypothesis H(0) coincides with the assumptions made in [4]. We
therefore refer to [4, Ex.1] for kernels obeying H(0). If, in the case y0 < ∞, the
kernels are of the form

γ(y, y′) ∝ yα−ξ−1 (y′)ξ , 0 < y′ < y < y0 ,

βc(y, y′) := (ζ + 2) y−1−ζ (y′)ζ , 0 < y′ < y < y0 ,

βs(y, y′) := (ν + 2) y−2−ν
0 y (y′)ν , 0 < y′ < y0 ≤ y < 2y0 ,

Q(y, y′) ∝ (y + y′)τ , (y, y′) ∈ Ξ ,

K(y, y′) ∝ (yy′)µ , y, y′ ∈ Y ,

with 0 ≥ ξ, ζ, ν > −1 and α, µ, τ > 0, we can choose ϑ > 0 sufficiently small such
that hypothesis H(ϑ) is satisfied for diffusion coefficients d(y) ∼ y−λ, λ > 0.

In order to show that problem (1.1) is well-posed, we assume in the sequel
that (2.3), (2.4), and at least hypothesis H(0) are satisfied. Then it follows, for
1 ≤ p < ∞, that

Lb ∈ L(Lp) and G := Lc + Ls ∈ L2(L2p, Lp) (3.2)
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since the pointwise product L2p × L2p → Lp is a multiplication. If J denotes an

interval in R
+ containing 0, we put J̇ := J \ {0}. We then call u ∈ C(J, Lp) a mild

Lp-solutions to the re-written problem

u̇ + Apu = L[u] , t > 0 , u(0) = u0 , (3.3)

provided it solves the fixed point equation

u(t) = U(t)u0 + U ⋆ L[u](t) in Lp , t ∈ J , (3.4)

where U(t) := e−tA, t ≥ 0, with A := A1 and

U ⋆ v(t) :=

∫ t

0

U(t − s) v(s) ds , t ∈ J .

A mild solution is a strong Lp-solution if u ∈ C1(J̇ , Lp) ∩ C(J̇ ,D(Ap)).

Given a Banach space E and µ ∈ R, we denote by BCµ(J̇ , E) the Banach space of

all functions u : J̇ → E such that
(

t 7→ tµu(t)
)

is bounded and continuous from J̇
into E, equipped with the norm

u 7→ ‖u‖BCµ(J̇,E) := sup
t∈J̇

tµ ‖u(t)‖E .

We write Cµ(J̇ , E) for the closed linear subspace thereof consisting of all u satisfy-
ing tµu(t) → 0 in E as t → 0.

Due to Theorem 2.1 we have (see [4, Prop.4])

Proposition 3.1. Let 1 ≤ p ≤ q ≤ ∞ and α ∈ [0, 2) \ {1 + 1/q} be such that
n(1/p − 1/q)/2 + α/2 < 1 and either q ∈ (1,∞) or α = 0. Then, for µ < 1,

(

u 7→ U ⋆ Lb[u]
)

∈ L
(

Cµ(J̇ , Lp), Cµ+ n

2
( 1

p
− 1

q
)+ α

2
−1(J̇ , Hα

q,B)
)

(3.5)

and
(

u 7→ U ⋆ G[u, u]
)

∈ L2
(

Cµ/2(J̇ , L2p), Cµ+ n

2
( 1

p
− 1

q
)+ α

2
−1(J̇ , Hα

q,B)
)

. (3.6)

Moreover, the analogue of [4, Prop.6]) is still valid:

Proposition 3.2. Let 1 < p ≤ q < ∞, α ∈ [0, 2) \ {1 + 1/q} and assume that
n(1/p − 1/q)/2 + α/2 < 1, where either α = 0 and p < q or α > 0 and q ∈ (1,∞).
Then, for u0 ∈ Lp,

Uu0 :=
(

t 7→ U(t)u0
)

∈ Cn

2
( 1

p
− 1

q
)+ α

2
(J̇ , Hα

q,B) .

Proof. Owing to (2.5), n(1/p − 1/q)/2 + α/2 < 1, and classical embedding argu-
ments we have

D(Ap) →֒ H
2
p,B →֒ H

α
q,B .

Hence, since U(t)u0 ∈ D(Ap), t > 0, due to Theorem 2.1, we deduce

‖U(t + h)u0 − U(t)u0‖Hα

q,B
≤ c

∫

Y

‖e(t+h)d(y)∆u0(y) − etd(y)∆u0(y)‖H2
p,B

(1 + y) dy
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for 0 ≤ |h| < t. Taking (2.1) and (2.4) into account and that {eτ∆ ; τ ≥ 0} is a
bounded and strongly continuous semigroup on H2

p,B in view of [1, V.Thm.2.1.3], we
infer from Lebesgue’s theorem that the right hand side of the above inequality tends
to zero as h → 0, and thus Uu0 ∈ C(J̇ , Hα

q,B). Theorem 2.1 then yields that the

map t 7→ tζ‖U(t)u0‖Hα

q,B
remains bounded on J̇ for ζ := n(1/p − 1/q)/2 + α/2 < 1.

The fact that H
α
q,B is dense in Lp implies Uu0 ∈ Cζ(J̇ , Hα

q,B) as in the proof of [4,
Prop.6].

Under hypothesis H(0) we can prove now existence and uniqueness of mild solu-
tions to problem (3.3). Subsequently, we will derive more regularity (with respect
to time) for these solutions.
Our global-in-time statement requires that collisional breakage is dominated by
coalescence, i.e., that

Q(y, y′)

(

∫ y+y′

0

βc(y + y′, y′′) dy′′ − 2

)

≤ P (y, y′) , y + y′ ∈ Y , (3.7)

and that scattering is a binary processes, meaning that

βs(y, y′) = βs(y, y − y′) , (y, y′) ∈ Ξ , (3.8)

and
βs(y, y′) = 0 , 0 < y′ < y − y0 < y0 . (3.9)

Then we have the following existence and uniqueness result.

Theorem 3.3. Let (2.3), (2.4), and hypothesis H(0) be satisfied and assume that
(n/2 ∨ 1) < p < ∞. Then, given any non-negative initial value u0 ∈ Lp, problem
(3.3) possesses a unique maximal non-negative mild Lp-solution u := u(·;u0) on an
open interval J(u0) ⊂ R

+ such that

tn/4p ‖u(t)‖L2p
→ 0 as t → 0+ .

In addition, u has the regularity

u ∈ C(J̇(u0), H2
q,B) , q ∈ (1,∞) . (3.10)

If t+ := sup J(u0) < ∞, then

sup
t+/2<t<t+

‖u(t)‖Lq
= ∞ , (n/2 ∨ 1) < q < ∞ . (3.11)

The solution u preserves the total mass, that is,

∫

Ω

∫

Y

y u(t, y, x) dydx =

∫

Ω

∫

Y

y u0(y, x) dydx , t ∈ J(u0) . (3.12)

Finally, if γ ≡ 0 and (3.7)-(3.9) are satisfied, then, for p ∈ (n/2,∞) and p ≥ 2, the
solution remains bounded in Lp whenever ‖u0‖Lp

is small. In particular, u exists
globally in time in this case.
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Proof. The proof of the existence and uniqueness parts of this theorem including
the blow-up behavior (3.11) are, verbatim, the same as the one of [4, Thm.7] (see
step (i) and (iii) of the proof of [4, Thm.7] and Propositions 3.1 and 3.2). For the
regularity result (3.10) we may focus on q > p. We choose T ∈ J̇(u0) and ε > 0
sufficiently small and derive,

L[u(· + ε)] ∈ C([0, T ], Hν
q,B) and u ∈ C((0, T ], Hν

q,B)

for some ν > 0. This can be done as in the second step of the proof of [4, Thm.7]
in view of Propositions 3.1 and 3.2. Since U is strongly continuous on H

ν
q,B due to

Lebesgue’s theorem (see the proof of Proposition 3.2), estimate (2.9) implies

U ⋆ L[u(· + ε)] ∈ C([0, T ], H2
q,B) and Uu(ε) ∈ C((0, T ], H2

q,B) .

Due to
u(t + ε) = U(t)u(ε) + U ⋆ L[u(· + ε)](t) , t ∈ [0, T ] , (3.13)

assertion (3.10) follows since ε > 0 was arbitrary.
Next observe that, for T ∈ J̇(u0), the mild solution u = u(·;u0) is bounded on
[0, T ] with values in H

α
q,B provided u0 ∈ H

α
q,B. Since H

α
q,B embedds continuously in

L∞ for q sufficiently large and since u solves the fixed point equation

u(t) = Uω(t)u0 + Uω ⋆ (L[u] + ωu)(t) , t ∈ J(u0) ,

we deduce that u is non-negative for non-negative initial values u0 ∈ H
α
q,B as in [4,

Thm.10]. Here, the constant ω > 0 suitably depends on sup0≤t≤T ‖u(t)‖L∞
and Uω

is given by Uω(t) := e−ωtU(t). The continuous dependence of u(·;u0) on u0 and the
density of H

α
q,B ∩ L

+
p in L

+
p (see [4, Lem.9]) yields then the positivity assertion.

The conservation of mass formula (3.12) follows from (3.4) by taking into account
the equality

∫

Y

y

∫

Ω

[U(t)v](y) dxdy =

∫

Y

y

∫

Ω

etd(y)∆v(x, y) dxdy

=

∫

Y

y

∫

Ω

v(x, y) dxdy , t > 0 , v ∈ Lp ,

which is due to the Neumann boundary conditions, and observing that
∫

Y

y L[v](y) dy = 0 , v ∈ L1(Y, ydy) ,

(see hypotheses (H1)-(H4) and [12, Lem.2.6]). Finally, based on estimate (2.10),
the global-in-time existence result is obtained as in [4, Thm.16] noticing that the
proof of the latter merely requires mild solutions. This proves the assertion.

Before we prove that hypothesis H(ϑ) with ϑ > 0 provides strong solutions, let
us show that also the weaker assumption H(0) implies that the original equation
(1.1) is satisfied pointwise almost everywhere. More precisely, definingLq := L1(Y,Lq,dµ(y)) with dµ(y) := d(y)−1(1 + y)dy ,

we have
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Theorem 3.4. The mild solution u = u(·;u0) provided by Theorem 3.3 belongs to
C1(J̇(u0),Lq) for each q ∈ [1,∞) and it holds that

u̇(t) = d∆u(t) + L[u(t)] in Lq , t ∈ J̇(u0) .

In particular, for almost every y ∈ Y , it holds that

u̇(t, y) − d(y)∆u(t, y) = L[u(t)](y) in Lq , t ∈ J̇(u0) .

Proof. Fix T ∈ J̇(u0) and ε > 0 sufficiently small and set

uε := u(· + ε) ∈ C([0, T ], H2
q,B) , q ∈ (1,∞) .

Then there is ν > 0 such that fε := L[uε] ∈ C([0, T ], Hν
q,B) (see [10, Cor.4.5.2]).

Given t ∈ [0, T ] and h > 0 sufficiently small, we deduce
∥

∥h−1
(

U(t + h)u(ε) − U(t)u(ε)
)

+ A U(t)u(ε)
∥

∥Lq

≤ h−1

∫

Y

d(y)

∫ t+h

t

∥

∥∆
(

eτd(y)∆ − etd(y)∆
)

uε(y)
∥

∥

Lq

dτ dµ(y)

≤ h−1

∫

Y

∫ t+h

t

∥

∥

(

eτd(y)∆ − etd(y)∆
)

uε(y)
∥

∥

H2
q,B

dτ (1 + y)dy .

Since {eτd(y)∆ ; τ ≥ 0} is for a.e. y ∈ Y a bounded and strongly continuous semi-
group on H2

q,B, we may apply Lebesgue’s theorem to deduce that the right hand
side of the above inequality tends to zero as h does. Hence

∂+U(t)u(ε) = −A U(t)u(ε) in Lq , t ∈ [0, T ] , (3.14)

and, since by the same arguments ∂+Uu(ε) ∈ C([0, T ],Lq), we obtain that Uu(ε)
belongs to C1([0, T ],Lq) with derivative given by (3.14). Next, for h > 0 small and
t ∈ (0, T ], we write

h−1
(

U ⋆ fε(t + h) − U ⋆ fε(t)
)

= h−1

∫ t

0

(

U(t + h − s) − U(t − s)
)

fε(s) ds

+ h−1

∫ t+h

t

U(t + h − s)fε(s) ds

=: Mh + Nh .

Then, as above, we compute

‖Mh + A (U ⋆ fε)(t)‖Lq

≤ ch−1

∫

Y

∫ t

0

∫ t+h

t

∥

∥

(

e(τ−s)d(y)∆ − e(t−s)d(y)∆
)

fε(s, y)
∥

∥

H2
q,B

dτ ds (1 + y)dy .

According to (2.2) and (2.4), for h ≤ 1 and 0 < s < t ≤ T , it holds that

h−1

∫ t+h

t

∥

∥

(

e(τ−s)d(y)∆ − e(t−s)d(y)∆
)

fε(s, y)
∥

∥

H2
q,B

dτ

≤ c sup
t≤τ≤t+1

(

1 ∧ (τ − s)d(y)
)−1+ν/2

‖fε(s, y)‖Hν

q,B

≤ c(T ) (t − s)−1+ν/2 ‖fε(s, y)‖Hν

q,B
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so that we may again apply Lebesgue’s theorem to deduce

Mh −→ −A (U ⋆ fε)(t) in Lq , h → 0+ . (3.15)

On the other hand, we have

‖Nh − fε(t)‖Lq

≤ h−1

∫

Y

∫ t+h

t

‖e(t+h−s)d(y)∆‖L(Lq)‖fε(s, y) − fε(t, y)‖Lq
dsdµ(y)

+ h−1

∫

Y

∫ t+h

t

∥

∥e(t+h−s)d(y)∆fε(t, y) − fε(t, y)
∥

∥

Lq

dsdµ(y)

≤ d−1
⋆ sup

t≤s≤t+h
‖fε(s) − fε(t)‖Lq

+ d−1
⋆

∫

Y

sup
0<τ<hd(y)

‖eτ∆fε(t, y) − fε(t, y)
∥

∥

Lq

(1 + y) dy .

Lebesgue’s theorem shows that the right side converges towards zero as h → 0+,
whence Nh → fε(t) in Lq. Taking (3.15) into account we obtain

∂+(U ⋆ fε)(t) = −A U ⋆ fε(t) + fε(t) in Lq , t ∈ (0, T ] . (3.16)

Due to (2.2), (2.4), and the strong continuity of U on H
ν
q,B, we derive

∂+(U ⋆ fε) ∈ C((0, T ],Lq) and U ⋆ fε ∈ C((0, T ],Lq) .

Thus U ⋆ fε ∈ C1((0, T ],Lq). Recalling (3.14), we infer from equation (3.13) that
uε ∈ C1((0, T ],Lq). Since ε > 0 was arbitrary, the assertion follows.

Stronger assumptions on the kernels ensure that the mild solutions actually are
strong solutions as the concluding theorem shows.

Theorem 3.5. Suppose that H(ϑ) holds with ϑ > 0. Then, given the assumptions
of Theorem 3.3, the mild solution u = u(·;u0) is a strong Lp-solution to problem
(3.3) and has the additional regularity

u ∈ C1(J̇(u0), Lq) ∩ C(J̇(u0),D(Aq)) , q ∈ (1,∞) .

Proof. We may assume that q ∈ (1,∞) is large. By [·, ·]θ we denote the complex
interpolation functor of exponent θ ∈ (0, 1). Then, in view of [11, Thm.1.18.4], we
may follow the lines of the second step of the proof of [11, Thm.1.18.5] to show that

[

L1(Y,Lq, (1 + y)dy), L1(Y,H2
q,B, d(y)(1 + y)dy)

]

θ
= L1

(

Y,H2θ
q,B, d(y)θ(1 + y)dy

)

provided 2θ ∈ (0, 1) \ {1 + 1/q}. Consequently, (2.5) implies, for 2θ 6= 1 + 1/q,

L1

(

Y,H2θ
q,B, d(y)θ(1 + y)dy

)

→֒
[

Lq,D(Aq)
]

θ
=: Eθ . (3.17)

Let now u ∈ C(J(u0), Lp)∩C(J̇(u0), H2
q,B) be the mild solution provided by Theo-

rem 3.3. Since q is large, we infer from [10, Cor.4.5.2] that there is some ν > 0
small such that the pointwise product H2

q,B × H2
q,B →֒ H2ν

q,B is continuous. By ma-
king ϑ smaller if necessary, we may assume that ν = ϑ. Therefore, hypothesis



12

H(ϑ) guarantees that the map t 7→ L[u(t)] is continuous on J̇(u0) with values in
L1(Y,H2ϑ

q,B, d(y)ϑ(1 + y)dy) (see (3.1)). Taking (3.17) into account we thus obtain

L[u] ∈ C(J̇(u0), Eϑ). As in part (ii) of the proof of [4, Thm.7] we can now shift
the equation (3.3) and apply [1, Thm.IV.1.5.1] in order to deduce that u(·+ ε) is a
strong Lq-solution for each ε > 0 small. This proves the claim.
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