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Abstract. A model for prion replication is studied. We prove global existence

of weak solutions for unbounded polymerization and degradation rates. For

bounded degradation rates, the solutions are shown to be classical.

1. Introduction

Prions are widely regarded as the infectious agent causing fatal diseases known as
TSE’s including BSE of cattle, Creutzfeld-Jakob and Kuru of human, and Scrapie
of sheep. Despite apparently lacking DNA and RNA, prions seem to be capable of
proliferation. The probably by now leading theory for replication is called nucleated
polymerization, according to which the infectious prions are thought to be a poly-
mer form, called PrPSc, of a normal protein PrPC . This polymer form can build
bonds involving several thousands of monomer units by attaching non-infectious
PrPC monomers and converting them to the infectious form. Prions are very sta-
ble but, nevertheless, can split into smaller polymers. Usually, this produces again
two infectious PrPSc polymers. However, if at least one part falls below a critical
size y0 > 0, it is assumed that this part instantaneously degenerates into PrPC

monomers. We refer to [5], [6], [7], [10] and the references therein for more detailed
information about the biological background and, in particular, for the mechanism
of nucleated polymerization.

Here we consider a mathematical model for nucleated polymerization that has re-
cently been introduced in [5]. According to this model, the biological processes of
coagulation and splitting can be described by a coupled system consisting of an
ordinary differential equation for the number of PrPC monomers v(t) ≥ 0 and
a partial differential equation for the density distribution function u(t, y) ≥ 0 for
PrPSc polymers of size y > y0. The equations read as

v̇ = λ − γ v − v

∫ ∞

y0

τ(y) u(t, y) dy + 2
∫ ∞

y0

u(t, y)β(y)
∫ y0

0

y′ κ(y′, y) dy′dy (1)

and

u̇ + v(t) ∂y

(
τ(y)u(y)

)
= −

(
µ(y) + β(y)

)
u(y) + 2

∫ ∞

y

β(y′) κ(y, y′) u(y′) dy′ (2)

for y ∈ Y := (y0,∞), which are supplemented with the initial conditions

v(0) = v0 , u(0, y) = u0(y) , y ∈ Y , (3)
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and the boundary condition

u(t, y0) = 0 , t > 0 . (4)

The right hand side of the linear ode for v takes into account that, on the one
hand, the number of monomers is increased by a constant background source λ
or if a PrPSc polymer of any size y > y0 decays at a rate β(y) into at least one
daughter polymer of size y′ ≤ y0, which is assumed to degenerate immediately into
monomers. The probability (density) for this event is denoted by κ(y′, y). On the
other hand, the number of PrPC monomers decreases by metabolic degradation,
which is accounted for by the term −γv, and if any monomer is attached to a PrPSc

polymer of size y > y0 at a rate τ(y).
The pde for u involves a transport term v(t)∂y(τ(y)u(y)) on the left hand side due
to polymerization, while the right hand side reflects that polymers of size y > y0

either disappear by metabolic degradation with rate µ(y) or by splitting with rate
β(y), or that they can be produced as the result of the decay of a larger polymer.

The equations above have been investigated in [4], [5], [9] assuming that the kernels
have the particular form

τ ≡ const , µ ≡ const , β(y) = β y , κ(y′, y) =
1
y

. (5)

If U(t) denotes the number of all PrPSc polymers and P (t) the number of all PrPC

monomers forming those polymers, that is, if

U(t) :=
∫

Y

u(t, y) dy , P (t) :=
∫

Y

y u(t, y) dy ,

we notice that (5) leads to the closed system of ode’s

v̇ = λ − γ v − τ v U + β y2
0 U , (6)

U̇ = β P − µU − 2 β y0 U , (7)

Ṗ = τ v U − µP − β y2
0 U , (8)

which is uniquely globally solvable. Thus, in this case, (1) and (2) are no longer
coupled since v(t) is known for all times t ≥ 0. Moreover, as observed in [5], there
exists a disease-free steady state and a disease steady state for the ode-problem
(6)-(8) and the original pde-problem (1), (2) as well. We point out that in the
general case, that is, if the kernels are not exactly of the form (5), existence of a
non-trivial (disease) steady state is not known so far.

In [5] the asymptotic behavior of the ode system (6)-(8) is investigated assuming
(5). In particular, global stability of the disease-free steady state and local stability
of the disease steady state is shown depending on the involved parameters. The
result concerning the non-trivial steady state has subsequently been improved in [9]
to global stability. Using the method of characteristics combined with semigroup
theory, equation (2) with data as in (5) has been solved in [4]. In addition, it is
shown that the solution converges towards the disease-free or the disease steady
state depending on whether or not there holds

y0β + µ >

√
λβτ

γ
. (9)
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Recently, equations (1)-(4) have been studied in [11] without assuming (5). There
existence and uniqueness of global classical solutions is shown provided the poly-
merization rate τ is independent of polymer size, the degradation rates µ and β
are arbitrary bounded functions, and the probability density satisfies the natural
constraints

κ(y′, y) = κ(y − y′, y) , y > y0 , 0 < y′ < y , (10)

meaning binary splitting of polymers, and∫ y

0

κ(y′, y) dy′ = 1 , y > y0 . (11)

Let us point out here that (10) and (11) imply

2
∫ y

0

y′ κ(y′, y) dy′ = y , y > y0 ,

i.e. splitting conserves the number of monomers.
In [11] also global weak solutions have been shown to exist for µ and β un-
bounded. In both situations it has been proved that the disease-free steady state
(v, u) = (λ/γ, 0) is globally asymptotically stable under some additional growth
assumptions.

The novelty of this paper is to take into consideration non-constant, even un-
bounded polymerization rates τ . The mathematically convenient assumption of
constant polymerization rate is often explained biologically by the linear appearance
of scrapie-associated PrPSc polymers when observed using an electron microscope.
Obviously, the model becomes mathematically more tractable when assuming a
constant polymerization rate [6, 7]. However, as pointed out in [6], assuming τ
constant is plausible for linear polymers, but not for globular aggregates since the
polymers may have another geometry on other levels. Therefore, our aim is to
establish existence for the equations involving a varying polymerization rate τ .

In the next section 2, we state our main results. The first statement is about the
existence and uniqueness of classical solutions, whose proof is sketched in section
3. Based on this result, we then show in section 4 how we can obtain existence of
weak solutions using a compactness argument. Finally, section 5 is dedicated to
asymptotical stability of the disease-free steady state.

2. Main Results

Clearly, the positive cone L+
1 of L1 := L1(Y, ydy) is a reasonable state space for

the population density u, since it allows to account for the biologically important
quantities of all PrPSc polymers and all PrPC monomers forming those polymers,
respectively.

For µ and β bounded we can proof the existence and uniqueness of global classical
solutions that propagate with finite speed.

Theorem 2.1. Suppose that µ, β ∈ L+
∞(Y ), that κ is a non-negative measurable

function satisfying (10), (11) and that

τ ∈ C1([y0,∞)) with 0 < τ(y) ≤ τ∗ y , y ≥ y0 . (12)
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Then, given any v0 > 0 and any u0 ∈ L+
1 with ∂y(τu0) ∈ L1 and u0(y0) = 0, there

exists a unique global classical solution (v, u) to (1)-(4) such that v ∈ C1(R+),
v(t) > 0 for t ≥ 0, and u ∈ C1(R+, L1) with ∂y(τu) ∈ C(R+, L1) and u(t) ∈ L+

1 for
t ≥ 0.
In addition, if τ ′ is bounded and suppu0 ⊂ [y0, S0] for some S0 > y0, then also
suppu(t) ⊂ [y0, S(t)], t ≥ 0, where S is the global solution to Ṡ = vτ(S), t > 0,
with S(0) = S0.

From a biological point of view, the assumption of a bounded splitting rate β does
not seem to be appropriate. We therefore would like to weaken the assumptions on
β and µ to also allow for unbounded degradation rates. To do so we introduce the
notion of weak solutions.

In the following we mean by L1,w(Y ) the space L1(Y ) := L1(Y, dy) equipped with
its weak topology. Moreover, we denote by

Q[u](y) := −
(
µ(y) + β(y)

)
u(y) + 2

∫ ∞

y

β(y′) κ(y, y′) u(y′) dy′ , a.e. y ∈ Y ,

the right hand side of (2).

Definition 2.2. Given v0 > 0 and u0 ∈ L+
1 , we call (v, u) a global weak solution

to (1)-(4) if
(i) v ∈ C1(R+) is a non-negative solution to (1),
(ii) u ∈ C(R+, L1,w(Y )) ∩ L∞,loc(R+, L+

1 ),
(iii) for all t > 0 and ϕ ∈ W 1

∞(Y ) there holds Q[u] ∈ L1((0, t)× Y ) and∫ ∞

y0

ϕ(y) u(t, y) dy −
∫ t

0

v(s)
∫ ∞

y0

ϕ′(y) τ(y) u(s, y) dy ds

=
∫ ∞

y0

ϕ(y) u0(y) dy +
∫ t

0

∫ ∞

y0

ϕ(y)Q[u(s)](y) dy ds .

We point out that for a weak solution (v, u) the function u a priori is time continu-
ous merely in the weak topology of L1(Y ). But arguments similar to [2, sect. II.1,
II.2] show that u actually belongs to C(R+, L1(Y )) provided that τ satisfies (12)
and has a bounded derivative.

To prove existence of weak solutions in the sense of Definition 2.2 we assume that{
there exists α ≥ 1 and % ∈ L+

∞(Y ) such that

%(y) → 0 as y →∞ and µ(y) + β(y) ≤ %(y)yα, a.e. y ∈ Y .
(13)

Furthermore, we require that κ satisfies (10), (11) and the technical condition
given R > y0 and ε > 0 there exists δ > 0 such that

sup
E⊂(y0,R)
|E|≤δ

ess-sup
y∈Y

β(y)
yα

∫ y

y0

1E(y′) κ(y′, y) dy′ ≤ ε , (14)

where 1E denotes the indicator function of a measurable set E ⊂ Y and |E| its
Lebesgue measure. We suppose that the polymerization rate τ satisfies (12) and
that, in the case α = 1,

τ(y) ≤ %(y)y , a.e. y ∈ Y . (15)
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Based on Theorem 2.1 we can prove existence of weak solutions employing a com-
pactness argument.

Theorem 2.3. Suppose (13)-(14) and (12) with (15) if α = 1. Given any v0 > 0
and any u0 ∈ L+

1 (Y, yαdy), problem (1)-(4) admits at least one global weak solution
(v, u). Moreover, u belongs to L∞,loc(R+, L1(Y, yαdy)).
In addition, if τ ′ is bounded and suppu0 ⊂ [y0, S0] for some S0 > y0, then also
suppu(t) ⊂ [y0, S(t)], t ≥ 0, where S is the global solution to Ṡ = vτ(S), t > 0,
with S(0) = S0.

To conclude, we mention the analogue to the stability result of [11] for the disease-
free steady state (v, u) = (λ/γ, 0). For this purpose, we suppose that either{

µ, β ∈ L+
∞(Y ) and

v0 > 0 , u0 ∈ L+
1 with ∂y(τu0) ∈ L1 and u0(y0) = 0 ,

(16)

or {
(13), (14) hold and

v0 > 0 , u0 ∈ L+
1 (Y, yαdy) .

(17)

Furthermore, in both cases we assume that τ ∈ C1([y0,∞)) with

0 < τ∗ ≤ τ(y) ≤ τ∗ < ∞ , y ∈ Y , (18)

and that

d0 := ess-sup
y∈Y

β(y)
yµ(y)

∈ (0,∞) .

We then introduce constants εk, δk such that

0 ≤ δk ≤ β(y)
∫ y0

0

(y′)k κ(y′, y) dy′ ≤ εk , a.e. y ∈ Y ,

for k = 0, 1, assuming at least ε1 < ∞. In the following we suppose that µ∧ δ0 > 0,
where

µ := ess-inf
y∈Y

µ(y) ,

and that
1

2d0
(µ + 2 δ0) >

λ(τ∗)2

2γτ∗
+

ε1τ
∗

τ∗
− 2 δ1 +

2d0δ1

(
ε1τ

∗/τ∗ − δ1

)
µ + 2δ0

. (19)

As the next theorem shows, the disease-free steady state is globally asymptoti-
cally stable.

Theorem 2.4. Suppose (10), (11), (18) and (16) or (17). Moreover, let (19) be
satisfied. Denote by (v, u) either the classical solution provided by Theorem 2.1 if
(16) holds, or the weak solution provided by Theorem 2.3 if (17) holds. Then, for
each ε > 0 there is δ > 0 such that

|v(t)− λ/γ| + ‖u(t)‖L1 ≤ ε , t ≥ 0 ,

whenever
|v0 − λ/γ| + ‖u0‖L1 ≤ δ .

If, in addition, β(y) ≤ By for a.e. y ∈ Y and some B > 0, then(
v(t), u(t)

)
−→ (λ/γ, 0) in R× L1(Y, yσdy) as t −→∞

for each σ < 1.
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We point out that the assumptions of Theorem 2.4 are equivalent to (9) in the case
that the data are as in (5). Indeed, in this case we may take d0 = β/µ, δ0 := βy0

and ε1 := δ1 := βy2
0/2.

3. Proof of Theorem 2.1

We merely give a sketch of the proof of Theorem 2.1 since the argumentation follows
closely the lines of [11, Thm.3.1].
We define a diffeomorphism Φ : Y → (0,∞) by virtue of

Φ(y) :=
∫ y

y0

dy′

τ(y′)
, y ∈ Y , (20)

and observe that

Φ−1
(
Φ(y) + t

)
≤ y etτ∗ , y > y0 , t ≥ 0 ,

due to (12). Given f ∈ L1 we set(
W (t)f

)
(y) := 1[t,∞)

(
Φ(y)

) τ
(
Φ−1(Φ(y)− t)

)
τ(y)

f
(
Φ−1(Φ(y)−t)

)
, y ∈ Y , t ≥ 0 .

It is not difficult to check that {W (t) ; t ≥ 0} is a strongly continuous positive
semigroup on L1 satisfying

‖W (t)‖L(L1) ≤ eτ∗t , t ≥ 0 .

For the corresponding generator −A there holds

Au = ∂y(τu) , u ∈ D(A) = {f ∈ L1 ; ∂y(τf) ∈ L1 , f(y0) = 0} .

Recall then that Q is a bounded and linear operator on L1 due to µ, β ∈ L∞(Y ).
Therefore, given T > 0, R > 1 and defining Av(t) := v(t)A−Q for

v ∈ VT,R :=
{
v ∈ C1([0, T ]) ; R−1 ≤ v(t) ≤ ‖v‖C1([0,T ]) ≤ R

}
,

it follows from [8, §5.2] that
(
− Av(t)

)
t∈[0,T ]

generates a unique evolution system
Uv(t, s), 0 ≤ s ≤ t ≤ T , in L1 with

‖Uv(t, s)‖L(L1) ≤ eω(t−s) , 0 ≤ s ≤ t ≤ T , v ∈ VT,R , (21)

for some ω := ω(T,R) > 0. Moreover, following the lines of the proof of [8,
Thm.5.4.6] we infer that the differentiability of v ∈ VT,R ensures that Uv(t, s) maps
D(A) continuously into itself and we may assume that

‖Uv(t, s)‖L(D(A)) ≤ ω , 0 ≤ s ≤ t ≤ T , v ∈ VT,R . (22)

In addition, for 0 ≤ s ≤ t ≤ T and v, w ∈ VT,R, we have

‖Uv(t, s)− Uw(t, s)‖L(D(A),L1) ≤ ω (t− s) ‖v − w‖C([0,T ]) . (23)

For details we refer to the proof of [11, Prop.2.2].
We choose T > 0 and S−1 > 0 sufficiently small and we denote by vū ∈ C1([0, T ])
the unique solution to (1) with u replaced by

ū ∈ XT :=
{
w ∈ C([0, T ], L+

1 ) ; ‖w(t)‖L1 ≤ S , t ∈ [0, T ]
}

.

There exists R := R(S) > 1 such that vū ∈ VT,R whenever ū ∈ XT . We then
observe that, since u0 ∈ D(A),

Λ(ū)(t) := Uvū
(t, 0) u0 , t ∈ [0, T ] , ū ∈ XT ,
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defines the unique solution in C([0, T ], D(A)) ∩ C1([0, T ], L1) to the problem

u̇ + Avū(t) u = 0 , t ∈ [0, T ] , u(0) = u0 .

Furthermore, (21)-(23) ensure that Λ : XT → XT is a contraction and hence has a
fixed point. This proves existence and uniqueness of a maximal solution (v, u) to
(1)-(4) on an interval J with properties as stated in Theorem 2.1. As in the proof
of [11, Thm.3.1] the identity

v̇(t) +
d
dt

∫ ∞

y0

y u(t, y) dy = λ − γ v(t) −
∫ ∞

y0

y µ(y) u(t, y) dy , t ∈ J , (24)

and (1) warrant the existence of R > 1 such that R−1 ≤ v(t) ≤ ‖v‖C1(J) ≤ R for
t ∈ J . According to (22) this implies

‖Uv(t, s)‖L(D(A)) ≤ c(J) , 0 ≤ s ≤ t ∈ J ,

whence J = R+ since ‖u(t)‖D(A) remains bounded (see the proof of [11, Thm.3.1]).
In order to prove finite speed of propagation we first recall that Ṡ = vτ(S), t > 0,
S(0) = S0 has, thanks to [1, Satz 5.1], a global solution given by

S(t) = φ−1

(∫ t

0

v(s) ds

)
, where φ(y) :=

∫ y

S0

dz

τ(z)
.

Next, we define P ∈ C1(R+, L1(Y )) by

P (t, y) :=
∫ ∞

y

u(t, y′) dy′ , y ∈ Y , t ≥ 0 ,

and notice that (2) implies

d
dt

∫ ∞

S(t)

P (t, y) dy = v(t) τ
(
S(t)

)
P

(
t, S(t)

)
+ v(t)

∫ ∞

S(t)

τ ′(y) P (t, y) dy

− Ṡ(t) P
(
t, S(t)

)
+

∫ ∞

S(t)

∫ ∞

y

Q[u(s)](y′) dy′ dy

≤ ‖τ ′‖∞ v(t)
∫ ∞

S(t)

P (t, y) dy + ‖β‖∞
∫ ∞

S(t)

P (t, y) dy .

Owing to ∫ ∞

S(0)

P (0, y) dy = 0

we infer ∫ ∞

S(t)

P (t, y) dy = 0 , t ≥ 0 .

This completes the proof of Theorem 2.1.

4. Proof of Theorem 2.3

In order to prove Theorem 2.3 we need the following auxiliary result. As in section
3 we use the notation −A = −∂y(τ ·) and denote by W (t), t ≥ 0, the corresponding
semigroup on L1(Y ).
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Lemma 4.1. Suppose τ satisfies (12) and, given v ∈ C([0, T ], R+), let UAv (t, s),
0 ≤ s ≤ t ≤ T , denote the unique evolution system in L1(Y ) for

−Av(t) := −v(t)A , 0 ≤ t ≤ T .

For S > y0 and δ > 0, put

λS(δ) := τ∗ S sup
E⊂(y0,S)
|E|≤δ

∫
E

dz

τ(z)
.

Then there holds

sup
E⊂(y0,S)
|E|≤δ

∫
E

UAv
(t, s) f dy ≤ sup

F⊂(y0,S)
|F|≤λS(δ)

∫
F

f dy

for any f ∈ L+
1 (Y ) and 0 ≤ s ≤ t ≤ T .

Proof. Given any measurable subset E of (y0, S) and any f ∈ L1(Y ) we notice that∫
E

W (t)f dy =
∫ ∞

Φ−1(t)

1E(y)
τ
(
Φ−1(Φ(y)− t)

)
τ(y)

f
(
Φ−1(Φ(y)− t)

)
dy

=
∫ ∞

y0

1Φ−1((Φ(E)−t)∩(0,∞))(y) f(y) dy ,

with Φ as in (20). Clearly, Φ−1
(
(Φ(E) − t) ∩ (0,∞)

)
⊂ (y0, S) and thus, due to

(12), ∣∣Φ−1
(
(Φ(E)− t) ∩ (0,∞)

)∣∣ ≤ λS(δ)
since the Lebesgue measure is invariant under translations. Observing that the
unique evolution system to

(
−Av(t)

)
t∈[0,T ]

is given by

UAv
(t, s) = W

(∫ t

s

v(r)dr

)
, 0 ≤ s ≤ t ≤ T ,

the assertion follows. �

Now we turn to the proof of Theorem 2.3. We rather briefly sketch it and point
out the necessary modifications to [11, Thm.4.3] .
First, let u0

n ∈ D+(Y ) be such that u0
n → u0 in L1(Y, yαdy). Put µn := min{µ, n},

βn := min{β, n}. We denote by

(vn, un) ∈ C(R+, R+ ×D(A)) ∩ C1(R+, R× L1)

the classical solution to (1)-(4) provided by Theorem 2.1, where (u0, β, µ) is replaced
by (u0

n, βn, µn). From the corresponding identity (24) we obtain, for T > 0 fixed,

vn(t) + ‖un(t)‖L1 ≤ c0(T ) , t ∈ [0, T ] , n ≥ 1 . (25)

Moreover, since by (10) and (11)

2
∫ y

y0

(y′)α κ(y′, y) dy′ ≤ yα , y > y0 ,

we infer from (2) and (12)
d
dt

∫ ∞

y0

yα un(t, y) dy ≤ α vn(t)
∫ ∞

y0

yα−1 τ(y)un(t, y) dy

≤ c(T )
∫ ∞

y0

yα un(t, y) dy ,
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whence
‖un(t)‖L1(Y,yαdy) ≤ c(T ) , t ∈ [0, T ] , n ≥ 1 , (26)

with c(T ) being independent of n. Using (13), (25) and (26) we easily derive from
equation (1)

max
t∈[0,T ]

|v̇n(t)| ≤ c(T ) , n ≥ 1 .

Therefore, the sequence (vn) is relatively compact in C([0, T ]) due to the Arzelà-
Ascoli theorem.
We then claim that the set {un(t) ; n ≥ 1 , t ∈ [0, T ]} is relatively compact in
L1,w(Y ). Indeed, from (25) it follows

lim
R→∞

sup
n≥1

t∈[0,T ]

∫ ∞

R

un(t, y) dy = 0 . (27)

Writing the solution un in the form

un(t) = UAvn
(t, 0) u0

n +
∫ t

0

UAvn
(t, s) Qn[un(s)] ds , t ∈ [0, T ] ,

with UAvn
denoting the evolution system corresponding to

(
− vn(t)A

)
t∈[0,T ]

, we
obtain from Lemma 4.1, for R > y0 and δ > 0,∫

E
un(t, y) dy ≤

∫
E∩(y0,R)

un(t, y) dy +
∫ ∞

R

un(t, y) dy

≤ sup
F⊂(y0,R)
|F|≤λR(δ)

∫
F

u0
n(y) dy

+ 2
∫ t

0

sup
F⊂(y0,R)
|F|≤λR(δ)

∫ ∞

y0

un(s, y)βn(y)
∫ y

y0

1F (y′) κ(y′, y) dy′ dy ds

+
1
R
‖un(t)‖L1 ,

where E is any measurable subset of Y with measure |E| ≤ δ. Hence, (13), (14),
(26), and the fact that λR(δ) → 0 as δ → 0+ imply

lim
|E|→0

sup
n≥1

t∈[0,T ]

∫
E

un(t, y) dy = 0 ,

what entails the claimed compactness of {un(t) ; n ≥ 1 , t ∈ [0, T ]} in L1,w(Y )
by invoking the Dunford-Pettis theorem (cf. [3, Thm.4.21.2]). Next, (25)-(27)
guarantee that the set {un ; n ≥ 1} is equicontinuous in L1,w(Y ) at every t ∈ [0, T ]
(see the proof of [11, Thm.4.3]). It thus follows from a variant of the Arzelà-Ascoli
theorem [12, Thm.1.3.2] that we may extract a subsequence (not relabeled) and
(v, u) such that

(vn, un) → (v, u) in C(R+, R× L1,w(Y )) . (28)

It remains to show that (v, u) is a weak solution to (1)-(4). But due to (13), (26),
and (12) combined with (15) in the case α = 1, we may apply [11, Lem.4.2] and see
that (v, u) satisfies (iii) of Definition 2.2. We also derive from the just cited lemma
that v is continuously differentiable and solves (i) of Definition 2.2.
Finally, finite speed of propagation follows from Theorem 2.1 since we may choose
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the sequence (u0
n) ⊂ D+(Y ) such that suppu0

n ⊂ [y0, S0] (see [11, Cor.4.4]). Thus
the proof of Theorem 2.3 is complete.

5. Proof of Theorem 2.4

The proof of Theorem 2.4 is based on the observation that, as in the proof of [11,
Lem.5.1], condition (19) ensures the existence of constants a, b > 0 such that the
function

F (v, u) :=
(

v − λ

γ

)2

+ a

∫ ∞

y0

y u(y) dy + b

∫ ∞

y0

u(y) dy

defines a Lyapunov function satisfying

F (v, u)(t) + p

∫ t

0

∫ ∞

y0

u(s, y) dy ds ≤ F (v0, u0) , t ≥ 0 , (29)

for some p > 0. For the classical solution (v, u) this follows directly by differenti-
ating F (v, u), while for the case of the weak solution we use inequality (29) for the
approximating sequence (vn, un) of the proof of Theorem 2.3 and show that it is
still true in the limit n → ∞. Due to the definition of F , this already proves the
stability statement of Theorem 2.4. If β(y) ≤ By, then (2) and (29) imply

‖u(t + h)‖L1(Y ) − ‖u(t)‖L1(Y ) ≤ c h , t , h > 0 ,

and ∫ ∞

0

‖u(s)‖L1(Y ) ds ≤ 1
p

F (v0, u0) .

Taking into account that

‖u(t)‖L1 ≤ 1
a

F (v0, u0) , t ≥ 0 ,

by (29), we conclude from the above inequalities that

u(t) → 0 in L1(Y, yσdy) as t →∞
for each σ < 1. This then also implies v(t) → λ/γ as t →∞, hence the statement
of Theorem 2.4.
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Philippe Laurençot for pointing out that finite speed of propagation is true also for
unbounded polymerization rates.

References
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