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ABSTRACT. The existence of positive equilibrium solutions to age-dependent population equations with non-
linear diffusion is studied in an abstract setting. By introducing a bifurcation parameter measuring the intensity
of the fertility it is shown that a branch of (positive) equilibria bifurcates from the trivial equilibrium. In some
cases the direction of bifurcation is analyzed.

1. INTRODUCTION

The present paper is dedicated to the study of nontrivial equilibrium (i.e. nonzero time-independent) so-
lutions to abstract age-structured population models with nonlinear diffusion, that is, to equations of the
form

∂tu + ∂au + A(u, a)u + µ(u, a)u = 0 , t > 0 , a ∈ (0, am) , (1.1)

u(t, 0) =
∫ am

0

β(u, a)u(a) da , t > 0 , (1.2)

subject to some initial condition at t = 0. Here, u = u(t, a) is a function taking on values in some Banach
space E0 and represents in applications the density at time t of a population of individuals structured by
age a ∈ J := [0, am), where am ∈ (0,∞] is the maximal age. The real-valued functions µ = µ(u, a)
and β = β(u, a) are respectively the death and birth modulus. The operator A(u, a) depending in a certain
way on the density u specified later governs the spatial movement of individuals. It is assumed to be a
(unbounded) linear operator A(u, a) : E1 ⊂ E0 → E0 satisfying additional technical assumptions given
later.

Age-structured models have a long history and various aspects regarding well-posedness and behavior
for large times were investigated (see [33] and the references therein) though most research was devoted
to models neglecting spatial structure from the outset or considering merely linear diffusion, see e.g. [14,
16, 5, 19, 23, 27] and the references therein. Less seems to be known for the case of age-structured models
with nonlinear diffusion (however, see e.g. [4, 17, 29, 30, 18]).

The understanding of the large time behavior of age-structured populations whose evolution is governed
by equations (1.1), (1.2) requires in particular precise information about the existence of equilibrium solu-
tions. Since obviously u ≡ 0 is such an equilibrium solution the aim is to establish existence of nontrivial
equilibria. Moreover, since u represents a density the main task is to single out the positive equilibrium
solutions in the (ordered) space E0. The aim of this paper is to give an existence result under “natural”
assumptions on A, µ, and β and this will be done in the framework of bifurcation theory.

Equilibria of (1.1), (1.2) are solutions to

∂au + A(u, a)u + µ(u, a)u = 0 , a ∈ (0, am) , (1.3)

u(0) =
∫ am

0

β(u, a)u(a) da . (1.4)
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Suppose that for any fixed u the map

a 7→ A(u, a) := A(u, a) + µ(u, a)

generates a parabolic evolution operator Πu(a, σ), 0 ≤ σ ≤ a < am, on E0 (e.g. in the sense of [2]). In
particular, Πu(a, 0) is (for u and a fixed) a bounded linear operator on E0 such that v(a) := Πu(a, 0)v0 for
v0 ∈ E0 is the unique strong solution to

∂av + A(u, a)v = 0 , a ∈ (0, am) , v(0) = v0 .

Thus, any solution u to (1.3) is necessarily of the form

u(a) = Πu(a, 0)u(0) , a ∈ J . (1.5)

Substituting this into (1.4) one derives the relation

u(0) = Q(u)u(0) , (1.6)

where the linear operator Q(u) on E0 (for u fixed) is defined by

Q(u) :=
∫ am

0

β(u, a)Πu(a, 0) da . (1.7)

Therefore, u is a solution to (1.3), (1.4) if and only if it satisfies (1.5) and (1.6). Consequently, u(0) is (if
nonzero) an eigenvector corresponding to the eigenvalue 1 of the linear operator Q(u) on E0.

Roughly speaking, Q(u) contains information about the spatial distribution of the expected number
of newborns that an individual produces over its lifetime when the population’s distribution is u. In the
present paper we suggest a bifurcation problem by introducing a bifurcation parameter n which determines
the intensity of the fertility without changing its structure. More precisely, we are interested in nontrivial
solutions (n, u) (that is, u 6≡ 0) to

∂au + A(u, a)u + µ(u, a)u = 0 , a ∈ (0, am) , (1.8)

u(0) = n

∫ am

0

b(u, a)u(a) da , (1.9)

where we put
n b(u, a) := β(u, a) , (1.10)

with b being a normalized function such that the spectral radius of the bounded linear operator

Q0 :=
∫ am

0

b(0, a)Π0(a, 0) da

equals 1, that is,
r(Q0) = 1 . (1.11)

Note that under this normalization we have r(Q(0)) = nr(Q0) = n; the bifurcation parameter n is thus
the spectral radius of the “inherent spatial net production rate at low densities” (technically when u ≡ 0).
If r(Q0) is an eigenvalue of Q0, then (1.11) may be interpreted as that there exists a distribution for which
the population is at balance meaning that the birth processes yield exact replacement (provided that death
and birth modulus and spatial displacement are described by µ(0, ·), β(0, ·), and A(0, ·)).

In this paper we provide a set of n-values for which (1.8), (1.9) have nontrivial and positive solutions
around the critical value n = 1 and u ≡ 0, analogously to the “spatially homogeneous” case (i.e. when
A = 0), see [8]. More precisely, it is shown that a branch of nontrivial solutions bifurcates from (i.e.
intersects with) the branch of trivial solutions (n, u) = (n, 0), n ∈ R, at the critical value of n. In principle,
the direction at which bifurcation occurs will be related to (the values at u ≡ 0 of the derivatives of) µ, β,
and A by computing a parametrization of the branch of nontrivial solutions. In some cases, the direction
can be computed explicitly. In particular, examples will be given where supercritical bifurcation occurs.
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In view of the arguments given in [8] for the spatially homogeneous version of (1.8), (1.9) indicating a
loss of stability of the trivial solution when the parameter n increases through the critical value, the same is
expected for the present situation with nonlinear diffusion though not proved herein.

The bifurcation result of this paper has a local character. However, we refer to a forthcoming paper [31]
where global bifurcation (i.e. the existence of an unbounded continuum of solutions (n, u)) will be shown
for the case of age-structured equations with diffusion possibly containing nonlinearities in “lower order
terms”.

In order to derive the local bifurcation result we consider problem (1.8), (1.9) in a more general frame-
work so that the results actually apply to a broader range of similar problems. In Section 2 we investigate
the general abstract framework and prove the bifurcation result using findings based on the implicit function
theorem obtained in [7]. We also derive a more precise characterization of the nontrivial branch of solutions
and show that the equilibria are positive. The subsequent Section 3 then gives applications for these results
(see also Subsection 1 below). We shall point out that analogue results for populations structured by age
only (that is, when A = 0) were derived [8, 9, 10]. Furthermore, additional results regarding equilibrium
solutions for age-structured equations are to be found in e.g. [12, 13, 15, 16, 20, 21, 22, 32, 33] and the
references therein.

Clearly, the abstract approach chosen in this paper applies to many different situation. To explain our
approach in more detail and outline the functional setting in concrete applications, we conclude the intro-
duction with an informal discussion of a simple example. We postpone all technical details to Section 3
(see, in particular, Example 3.4), where the precise assumptions needed will be stated.

An Example. Let u = u(a, x) denote the distribution density of individuals of a population with age
a ∈ (0, am) at spatial position x in a bounded space region Ω, where am ∈ (0,∞) denotes the maximal
age. Suppose that the individuals move within Ω and that dispersal speed a > 0 depends smoothly on the
local overall population; that is, suppose that movement is governed by a density dependent diffusion term
−divx

(
a(U(x))∇xu

)
, where U(x) :=

∫ am
0

u(a, x)da is the overall population at spatial position x ∈ Ω.
Assume further that individuals cannot leave the space region Ω so that the behavior on the boundary ∂Ω
is described by Neumann conditions ∂νu = 0 with ν denoting the outward unit normal to ∂Ω. Given any
fixed distribution u, suppose that both death rate µ(u, ·) and parameter-dependent birth rate nb(u, ·) are
functions of age only. Then time-independent (i.e. equilibrium) solutions to the corresponding evolution
problem satisfy the equations

∂au− divx
(

a(U(x))∇xu
)

+ µ(u, a)u = 0 , a ∈ (0, am) , x ∈ Ω , (1.12)

u(0, x) = n

∫ am

0

b(u, a)u(a, x) da , x ∈ Ω , (1.13)

∂νu(a, x) = 0 , a ∈ (0, am) , x ∈ ∂Ω , (1.14)

U(x) =
∫ am

0

u(a, x) da , x ∈ Ω . (1.15)

The goal is to show that this parameter-dependent problem admits a branch of solutions (n, u) with u ≥ 0
but u 6≡ 0 intersecting at some point with the trivial branch (n, u) = (n, 0), n ∈ R.

To do so we first reformulate the problem within the framework of semigroup theory. Given a suitable
function u set U :=

∫ am
0

u(a, ·) da and define a linear operator A(u) : W 2
p,B(Ω)→ Lp(Ω) by

A(u)v := −divx
(

a(U)∇xv
)
, v ∈W 2

p,B(Ω) := {φ ∈W 2
p (Ω) ; ∂νφ = 0} ,

where E0 := Lp(Ω) is the space of p-integrable functions on Ω and W 2
p (Ω) is the usual Sobolev space of

order 2 over Lp(Ω). This notation allows us to write (1.12)-(1.15) abstractly as E0-valued equations for
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u : J → E0 of the form
∂au+A(u)u+ µ(u, a)u = 0 , a ∈ (0, am) ,

u(0) = n

∫ am

0

b(u, a)u(a) da .
(1.16)

Let {e−aA(u) ; a ≥ 0} denote the analytic semigroup onE0 = Lp(Ω) associated with−A(u); that is, given
any function v0 ∈ Lp(Ω) let v(a) := e−aA(u)v0 be the unique classical solution to

∂av +A(u)v = 0, a ∈ (0, am) , v(0) = v0 .

Then any solution to (1.12), (1.14), (1.15) must satisfy the relation

u(a) = e−
∫ a
0 µ(u,r)dre−aA(u)u(0) , a ∈ [0, am) .

Using the formula for u(0) in (1.16) we obtain that u(0) satisfies

u(0) = n

∫ am

0

b(u, a) e−
∫ a
0 µ(u,r)dr e−aA(u) da u(0) . (1.17)

In particular, u(0) is an eigenvector to the eigenvalue 1/n of the linear operator

Qu :=
∫ am

0

b(u, a) e−
∫ a
0 µ(u,r)dr e−aA(u) da . (1.18)

Classical Sobolev embedding theorems and the parabolic maximum principle ensure that, for a > 0 and u
fixed, the linear operator e−aA(u) is compact and strongly positive considered as an operator on a suitable
subspace of Lp(Ω) (that is, on an interpolation space between Lp(Ω) and W 2

p,B(Ω)). It then follows that
also the operator Qu possesses these properties of being a compact and strongly positive operator on this
subspace of Lp(Ω). Consequently, the Krein-Rutman theorem implies in particular that the spectral radius
of Q0 (i.e. of Qu with u ≡ 0 in (1.18)) is a simple eigenvalue with an eigenfunction B belonging to the
interior of this subspace. This last property is crucial for deriving positive solutions to (1.12)-(1.15). Indeed,
we first investigate the linearization of (1.16) around u ≡ 0, i.e. the problem

∂au+A(0)u+ µ(0, a)u = h2(a) , a ∈ (0, am) ,

u(0)−
∫ am

0

b(0, a)u(a) da = h1 ,

for h1, h2 given, and prove that the corresponding solution operator is a Fredholm operator of index zero by
using the property of maximal regularity of the operator A(0) + µ(0, ·) (see Section 2 for a definition and
details). This allows us to tackle the nonlinear problem (1.16) by the implicit function theorem (see [7]),
which yields a nontrivial branch of solutions (n, u) = (nε, uε), 0 ≤ ε < ε0, of the form

uε(a) = ε
(
e−

∫ a
0 µ(0,r)dre−aA(0)B + zε

)
(zε being a suitable perturbation)

emanating from the trivial branch (n, u) = (n, 0), n ∈ R at a certain critical point (for convenience chosen
to be (n, u) = (1, 0)). Since uε stays in a neighborhood of B for ε > 0 small, the strict positivity of B
ensures the positivity of uε.

One can also deduce more information about the direction of bifurcation. For instance, suppose that, for
all age classes, the smallest death rate and the largest fertility rate occur at the lowest population densities,
that is, let µ(u, a) ≥ µ(0, a) and b(u, a) ≤ b(0, a) for all a ∈ (0, am) and all densities u. Then necessarily
nε ≥ 1 as can be derived easily from (1.17) by observing that movement alone does not alter the number of
individuals. Thus bifurcation must be “to the right”, i.e. supercritical bifurcation occurs.

As pointed out already, arguments provided in [8] for the spatially homogeneous case indicate that the
trivial solution looses stability when the parameter value n increases through the critical value n = 1 and –
in the case of supercritical bifurcation – the nontrivial branch (at least near the critical point (1, 0)) consists
of stable equilibria. Though this exchange of stability is not proved herein for the case with nonlinear



EQUILIBRIUM SOLUTIONS FOR STRUCTURED POPULATION MODELS 5

diffusion and thus remains a conjecture, applied to the present example its biological interpretation would
be that low fertility rates lead to extinction and high fertility rates allow for survival of the population.

2. ABSTRACT FORMULATION

Given Banach spaces E and F we write L(E,F ) for the space of bounded linear operators from E to F
equipped with the usual operator norm, and we put L(E) := L(E,E). We write r(A) for the spectral ra-
dius of A ∈ L(E). If A is a closed linear operator in E we let s(A) := sup{Reλ ; λ is an eigenvalue of A}
denote the spectral bound of A. The subspace of L(E) consisting of compact operators is K(E). If E is
an ordered Banach space we write L+(E) and K+(E) for the corresponding positive operators. We let

Lis(E,F ) denote the subspace of L(E,F ) of topological linear isomorphisms. If E
d
↪→ F , that is, if E

is densely embedded in F , then H(E,F ) is the set of all negative generators of analytic semigroups on F
with domainE. BIP(E;φ) stands for the set of operators with bounded imaginary powers and power angle
φ ∈ [0, π/2), that is, those linear operatorsA inE for which there isM ≥ 1 such that ‖Ait‖L(E) ≤Meφ|t|,
t ∈ R. For details we refer to [2].

Throughout this paper we suppose that E0 is a real Banach space and E1
d
↪−↪→ E0, that is, E1 is a

densely and compactly embedded subspace of E0. We fix p ∈ (1,∞), put ς := ς(p) := 1 − 1/p and
set Eς := (E0, E1)ς,p with (·, ·)ς,p being the real interpolation functor. Similarly we choose for each
α ∈ (0, 1) \ {1 − 1/p} an arbitrary admissible interpolation functor (·, ·)α and put Eα := (E0, E1)α so

that E1
d
↪−↪→ Eα (see [2]). If E0 is ordered by a closed convex cone E+

0 , then the interpolation spaces are
equipped with the order naturally induced by E+

0 . Given am ∈ (0,∞] we set J := [0, am) which thus may
be bounded or unbounded. Moreover, we put

E0 := Lp(J,E0) , E1 := Lp(J,E1) ∩W 1
p (J,E0)

and recall that
E1 ↪→ BUC(J,Eς) (2.1)

according to, e.g. [2, III.Thm.4.10.2], where BUC stands for bounded and uniformly continuous. In par-
ticular, the trace γu := u(0) is well-defined for u ∈ E1.

We then study problems of the form

∂au + A(u, a)u = 0 , a ∈ J , (2.2)

u(0) = n `(u) (2.3)

where A(u, a) ∈ L(E1, E0) and `(u) ∈ Eς for a ∈ J and u ∈ E1 with `(0) = 0. We will impose more
restrictions later. Introducing A0(a) := A(0, a) and assuming a decomposition

`(u) = `0(u) + `∗(u)

with a linear part `0, we first focus our attention on the linearization around 0 of the above problem and
show that the corresponding solution operator is a Fredholm operator of index zero.

2.1. Preliminaries. In the following we assume that

`0 ∈ L(E1, Eϑ) for some ϑ ∈
(
ς, 1
)

(2.4)

and that
A0 ∈ L∞(J,L(E1, E0)) generates a parabolic evolution operator

Π0(a, σ), 0 ≤ σ ≤ a < am, on E0 with regularity subspace E1 and

possesses maximal Lp-regularity, that is, (∂a + A0, γ) ∈ Lis(E1,E0 × Eς) .
(2.5)
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For details about evolution operators and operators possessing maximal regularity we refer the reader, e.g.,
to [2]. It seems to be worthwhile to point out that, owing to (2.5) and [2, III.Prop.1.3.1], the problem

∂au + A0(a)u = f(a) , a ∈ J , u(0) = u0

admits for each datum (f, u0) ∈ E0 × Eς a unique solution u ∈ E1 given by

u(a) = Π0(a, 0)u0 +
∫ a

0

Π0(a, σ)f(σ) dσ , a ∈ J , (2.6)

satisfying for some c0 > 0
‖u‖E1 ≤ c0

(
‖f‖E0 + ‖u0‖Eς

)
. (2.7)

In particular,
Π0(·, 0) ∈ L(Eς ,E1) and K0 ∈ L(E0,E1) , (2.8)

where

(K0f)(a) :=
∫ a

0

Π0(a, σ)f(σ) dσ , a ∈ J , f ∈ E0 ,

while, due to (2.4), (
f 7→ `0(K0f)

)
∈ L(E0, Eς) . (2.9)

Moreover, we obtain from (2.4), (2.8), and the fact that Eϑ ↪−↪→ Eς (e.g. see [2, I.Thm.2.11.1])

Q0 ∈ L(Eς , Eϑ) ∩ K(Eς) for Q0w := `0
(
Π0(·, 0)w

)
, w ∈ Eς . (2.10)

The next result will be fundamental for what follows.

Lemma 2.1. Suppose (2.4) and (2.5). Then the operator

Lu :=
(
γu− `0(u), (∂a + A0)u

)
satisfies L ∈ L(E1, Eς × E0) and has a closed kernel ker(L) and a closed range rg(L) of finite dimension
and codimension, respectively, both of which admit bounded projections Pk and Pr. In fact,

ker(L) = span
{

Π0(·, 0)w ; w ∈ ker(1−Q0)
}
,

rg(L) =
{

(h1, h2) ∈ Eς × E0 ; h1 + `0(K0h2) ∈ rg(1−Q0)
}
,

Eς × E0 = rg(L)⊕ (N × {0}) ,

where Eς = rg(1−Q0)⊕N , and

dim(ker(L)) ≤ codim(rg(L)) = dim(ker(1−Q0)) <∞ .

Proof. First observe that (2.6) implies that, for (h1, h2) ∈ Eς × E0, the equation Lu = (h1, h2) with
u ∈ E1 is equivalent to

u = Π0(·, 0)u(0) +K0h2 , (1−Q0)u(0) = h1 + `0(K0h2) . (2.11)

If 1 is not an eigenvalue of Q0 ∈ K(Eς), then (2.11) easily entails that ker(L) is trivial. Moreover, in this
case we have h1 + `0(K0h2) ∈ Eς for any (h1, h2) ∈ Eς × E0 by (2.9) and there is a unique w ∈ Eς for
which (1−Q0)w = h1 + `0(K0h2). Thus u := Π0(·, 0)w+K0h2 belongs to E1 due to (2.8) and satisfies
Lu = (h1, h2), whence rg(L) = Eς × E0 from which the claim follows in this case.

Otherwise, if 1 is an eigenvalue of Q0 ∈ K(Eς), then (2.11) ensures

ker(L) = span
{

Π0(·, 0)w ; w ∈ ker(1−Q0)
}
⊂ E1

which is clearly closed sinceL ∈ L(E1, Eς×E0) by (2.4), (2.5). In particular, the dimension of ker(L) does
not exceed the dimension of ker(1−Q0), the latter clearly being finite since the eigenvalue 1 has finite mul-
tiplicity. Therefore, ker(L) is complemented in E1 and admits a bounded projection Pk ∈ L(E1, ker(L))
(e.g., see [24, Lem.4.21]). Next, given (h1, h2) ∈ rg(L) ⊂ Eς × E0 and u ∈ E1 with Lu = (h1, h2),
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we have h1 + `0(K0h2) ∈ rg(1 − Q0) as observed in (2.11). Conversely, if (h1, h2) ∈ Eς × E0 and
(1−Q0)w = h1 + `0(K0h2) for some w ∈ Eς , then Lu = (h1, h2) for u := Π0(·, 0)w +K0h2. Thus

rg(L) =
{

(h1, h2) ∈ Eς × E0 ; h1 + `0(K0h2) ∈ rg(1−Q0)
}
. (2.12)

Since Q0 is compact, M := rg(1−Q0) is a closed subspace of Eς , hence rg(L) is closed in Eς × E0 due
to (2.9). Furthermore, codim(M) = dim(ker(1 − Q0)) < ∞, and hence M is complemented in Eς , that
is, Eς = M ⊕N . Let PM ∈ L(Eς) denote the projection onto M and set

Pr(h1, h2) :=
(
PMh1 − (1− PM )`0(K0h2), h2

)
. (2.13)

Then clearly P 2
r = Pr ∈ L(Eς × E0) by (2.9), Pr(Eς × E0) = rg(L) by (2.12), and

(1− Pr)(h1, h2) =
(
(1− PM )(h1 + `0(K0h2)), 0

)
∈ N × {0} .

Thus we conclude that Eς × E0 = rg(L)⊕ (N × {0}) and so

codim(rg(L)) = dim(N) = dim(ker(1−Q0)) .

This proves the assertion. �

The verification of (2.5) is not a simple task in general. We thus recall conditions that allow us in
Section 3 to consider cases for which (2.5) is readily verified.

Lemma 2.2. Suppose that

A0 ∈ BUC(J,L(E1, E0)) generates a parabolic evolution operator on E0 . (2.14)

Further suppose, for each a ∈ J , that 0 belongs to the resolvent set of A(a), that

A0(a) possesses maximal Lp-regularity , (2.15)

and that
lim
a→∞

A0(a) exists in L(E1, E0) if am =∞ . (2.16)

Then (2.5) is satisfied.

Proof. This is a consequence of [25, Thm.1.4]. �

Remarks 2.3. (a) If A0 ∈ Cρ(J,H(E1, E0)) for some ρ > 0, then it generates a parabolic evolution
operator on E0 due to [2, II.Cor.4.4.2].
(b) In case that E0 is a UMD-space (see [2] for a definition and properties), condition (2.15) holds if for
each a ∈ J there is some angle θ(a) ∈ [0, π/2) for which A0(a) ∈ BIP(E0; θ(a)), see [2, III.Thm.4.10.7].

2.2. Nonlinear Theory. We now focus on problem (2.2), (2.3). Let m ∈ N\{0} and let Σ denote an open
ball in E1 centered at 0 of some positive radius R0 > 0. Suppose that

A ∈ Cm
(
Σ, L∞(J,L(E1, E0))

)
and A0 := A(0) satisfies (2.5) . (2.17)

We set A∗(u) := A(u) − A0 and sometimes write A(u, a) := A(u)(a) for u ∈ Σ, a ∈ J and accordingly
A∗(u, a) := A∗(u)(a). We also assume that ` admits a decomposition

`(u) = `0(u) + `∗(u) , (2.18)

where the linear part `0 satisfies (2.4) and `∗ is such that `∗(εu) = ε¯̀∗(ε, u), u ∈ Σ, |ε| < 1, for some
function

¯̀∗ ∈ Cm((−1, 1)× Σ, Eς) with ¯̀∗(0, ·) = 0 , Du
¯̀∗(0, ·) = 0 . (2.19)

We put
T (λ, u) := λ

(
`0(u), 0

)
+
(
(λ+ 1)`∗(u),−A∗(u)u

)
, (λ, u) ∈ R× Σ ,

and note that with n = λ+ 1 problem (2.2), (2.3) can be be re-written as Lu = T (λ, u) with L being given
in Lemma 2.1. We introduce T̄ ∈ Cm(R× (−1, 1)× Σ, Eς × E0) as

T̄ (λ, ε, u) := λ
(
`0(u), 0

)
+
(
(λ+ 1)¯̀∗(ε, u),−A∗(εu)u

)
, (λ, ε, u) ∈ R× (−1, 1)× Σ ,
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and observe that T (λ, εu) = εT̄ (λ, ε, u). Nontrivial solutions to (2.2), (2.3) are then provided by the
following

Theorem 2.4. Suppose (2.4), (2.17), (2.18), and (2.19). Moreover, suppose that r(Q0) = 1 is an eigen-
value of Q0 ∈ K(Eς) with geometric multiplicity 1, where Q0 is defined in (2.10), and let B ∈ Eς be a
corresponding eigenvector. Then there exists ε0 > 0 such that the problem

∂au + A(u, a)u = 0 , a ∈ J ,
u(0) = n `(u)

has a branch of nontrivial solutions
{(
nε, uε

)
∈ R+ × E1 ; 0 < |ε| < ε0

}
of the form

nε = 1 + κε , uε = ε
(
Π0(·, 0)B + zε

)
, 0 < |ε| < ε0 ,

where [ε 7→ κε] : (−ε0, ε0) → R and [ε 7→ zε] : (−ε0, ε0) → ker(Pk) are m-times continuously
differentiable with κ0 = 0 and z0 = 0, where Pk ∈ L(E1) is the projection onto ker(L).

Proof. We re-write (2.2), (2.3) as Lu = T (λ, u) and validate the requirements for Theorem 1 in [7]. First
recall that Lemma 2.1 warrants that L ∈ L(E1, Eς × E0) has a closed kernel ker(L) = span

{
Π0(·, 0)B

}
and a closed range rg(L) both admitting bounded projections Pk and Pr, respectively, and that the codi-
mension of rg(L) equals 1. Thus H1 and H2 in [7] hold. To validate H3 therein we just have to observe
that for y ∈ ker(L) ∩ Σ

T̄ (0, 0, y) =
(¯̀∗(0, y),−A∗(0)y

)
= (0, 0)

and
D3T̄ (0, 0, y) =

(
0,−A∗(0)y

)
= (0, 0) .

It remains to verify H4 in [7]. For, let 1− Pr be the projection of Eς × E0 onto the one-dimensional space
N ×{0} (see Lemma 2.1) and let c(λ, ε, z) be the component of T̄ (λ, ε,Π0(·, 0)B + z) with respect to the
basis

{
(B, 0)

}
of N × {0} for given λ ∈ R, |ε| < 1, and ‖z‖E1 < R0/2. Here we may assume without

loss of generality that ‖Π0(·, 0)B‖E1 < R0/2. Hence it follows from Q0B = B ∈ N , (2.19), and (2.13)
that

(1− Pr)T̄ (λ, 0,Π0(·, 0)B) = (1− Pr)(λB, 0) = λ(B, 0) ,
that is, cλ(λ, 0, 0) = 1. Now [7, Thm.1] implies the assertion. �

Remark 2.5. Clearly, the result applies to non-homogeneous problems

∂au + A(u, a)u = g(u, a) , a ∈ J ,
u(0) = n `(u)

as well provided that there is ḡ such that g(εu, ·) = εḡ(ε, u, ·) with

[(ε, u) 7→ ḡ(ε, u, ·)] ∈ Cm((−1, 1)× Σ,E0) and ḡ(0, ·, ·) = 0 .

Next we compute the ε-expansion of the branch (nε, uε). Under the assumptions of Theorem 2.4 let
Pk ∈ L(E1) denote the projection onto ker(L) = span

{
Π0(·, 0)B

}
such that Pku = k (u)Π0(·, 0)B with

k (u) ∈ R for u ∈ E1. Again we set M = rg(1 − Q0) and Eς = M ⊕ N with corresponding projection
PM (see the proof of Lemma 2.1).

Proposition 2.6. In addition to the assumptions of Theorem 2.4 with m ≥ 2 suppose that Du`∗(0) = 0.
Then the branch of nontrivial solutions (nε, uε), |ε| < ε0, from Theorem 2.4 can be written in the form

nε = 1 + ζε+ n̄ε , uε = εΠ0(·, 0)B + ε2
(
Π0(·, 0)ξ −K0h

)
+ εūε

for |ε| < ε0, where [ε 7→ n̄ε] : (−ε0, ε0) → R and [ε 7→ ūε] : (−ε0, ε0) → ker(Pk) are such that
|n̄ε| = o(ε2) and ‖ūε‖E1 = o(ε2) as |ε| → 0. The function h ∈ E0 is defined by

h(a) :=
(
DuA∗(0)(Π0(·, 0)B)(a)

)
Π0(a, 0)B , a ∈ J ,
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ζ ∈ R is the unique coefficient of

(1− PM )
(
`0(K0h)− g

)
= ζB ∈ N

with

g :=
1
2
D2
u`∗(0)[Π0(·, 0)B,Π0(·, 0)B] ∈ Eς ,

and ξ ∈ Eς is the unique solution to

(1−Q0)ξ = ζB + g − `0(K0h) ∈M , k (Π0(·, 0)ξ) = k (K0h) .

Proof. We plug the twice continuously differentiable functions κ = κε and u = uε provided by Theo-
rem 2.4 into the equation Lu = T (λ, u), which we then differentiate twice with respect to ε. Evaluating the
result at ε = 0 and using Du`∗(0) = 0 together with `0(Π0(·, 0)B) = B, we obtain

Lz′0 =
(
κ′0B + g,−h

)
(2.20)

with dashes denoting derivatives with respect to ε and g, h as given in the statement. Hence, from (2.11),

y := κ′0B + g − `0(K0h) ∈M

and thus, since PMB = 0,
(1− PM )

(
− g + `0(K0h)

)
= κ′0B

from which the formula for nε follows by setting ζ := κ′0. Next, if % ∈ Eς is an arbitrarily fixed solution
to (1 − Q0)% = y, then any other η ∈ Eς with (1 − Q0)η = y can be written uniquely in the form
ηα := η = % + αB for some α ∈ R. Writing w := z′0 ∈ E1 we have w = Π0(·, 0)ηα − K0h by (2.20)
and (2.11) with α ∈ R determined by the constraint that w must belong to ker(Pk). This is obtained by
observing that

0 = Pkw =
(

k (Π0(·, 0)%) + α− k (K0h)
)
Π0(·, 0)B ,

that is, α = k (K0h)− k (Π0(·, 0)%). For this α we put ξ := ηα and get

uε = εΠ0(·, 0)B + ε2
(
Π0(·, 0)ξ −K0h

)
+ εūε

with ‖ūε‖E1 = o(ε2) as |ε| → 0.
�

2.3. Positive Solutions. We shall give conditions under which the nontrivial equilibrium solutions are
positive. To this end we suppose that

E0 is ordered by a closed convex cone E+
0 . (2.21)

Then the interpolation spaces Eσ are given their natural order induced by the cone E+
σ := Eσ ∩ E+

0 . For
information on positive and strongly positive operators we refer to [11, 26]. If (n, u) is a solution to (2.2),
(2.3) we say that u is a positive equilibrium provided that u(a) ∈ E+

0 for a ∈ J .

Before turning to positive solutions we remark the following about the assumptions on Q0 in Theo-
rem 2.4.

Remark 2.7. Assume that the parabolic evolution operator Π0 corresponding to A0 in (2.5) is positive,
that is, Π0(a, σ) ∈ L+(E0) for 0 ≤ σ ≤ a < am. If also `0 ∈ L+(E1, Eϑ) in (2.4), then Q0 ∈ K+(Eς)
and thus the Krein-Rutman theorem entails that the spectral radius r(Q0) is (if nonzero) an eigenvalue of
finite multiplicity with a positive eigenvector B ∈ E+

ς . Hence, in this case the assumption in Theorem 2.4
that the normalized spectral radius r(Q0) = 1 is an eigenvalue is no severe restriction. More restrictive
is the assumption that this eigenvalue has geometric multiplicity 1. However, if Q0 is strongly positive or
irreducible, then r(Q0) = 1 is simple, see for instance [11, Sect.12] or [26, App.3.2]. We also refer to the
next section for concrete examples.
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Proposition 2.8. Suppose the assumptions of Theorem 2.4 and (2.21). In addition,

for each u ∈ Σ let A(u) generate a positive parabolic

evolution operator Πu(a, σ) , 0 ≤ σ ≤ a < am , on E0 .
(2.22)

If (nε, uε) is the branch of solutions from Theorem 2.4, then uε is positive provided that ε ∈ (0, ε0) is such
that

1
ε
γuε = B + γzε ∈ E+

ς . (2.23)

In particular, if B belongs to the interior of E+
ς , then uε is positive for ε > 0 sufficiently small.

Proof. This follows from the fact that under the stated assumptions any solution (n, u) to (2.2), (2.3) satis-
fies

u(a) = Πu(a, 0)u(0) , a ∈ J ,
hence u(a) ∈ E+

ς for a ∈ J if γu = u(0) ∈ E+
ς , and from the fact that zε → 0 in E1 ↪→ BUC(J,Eς) as

ε→ 0. �

Remark 2.9. Recall that according to [2, II.Cor.4.4.2, II.Thm.6.4.2], A(u) generates a positive parabolic
evolution operator Πu(a, σ) onE0 provided that A(u) ∈ Cρ(J,H(E1, E0)) for some ρ > 0 and−A(u)(a)
is resolvent positive for each a ∈ J . In this case, a solution u ∈ E1 to (2.2), (2.3) possesses additional
regularity, see [2, II.Thm.1.2.1, II.Thm.5.3.1].

Under some symmetry conditions on A and ` the equilibrium solutions provided by Theorem 2.4 are
positive for each parameter value nε, −ε0 < ε < ε0. More precisely, we have:

Proposition 2.10. Suppose the assumptions of Theorem 2.4, (2.21), and (2.22). Let A(u) = A(−u)
and `(u) = −`(−u) for u ∈ Σ. Given u ∈ Σ set Quw := `(Πu(·, 0)w), w ∈ Eα, and suppose that
Qu ∈ L+(Eα) for some α ∈ [0, ς]. Moreover, suppose that any positive eigenvalue of Qu has geometric
multiplicity 1 and possesses a positive eigenvector. Then

C+ :=
{(
nε, uε

)
; γuε ∈ E+

0

}
∪
{(
nε,−uε

)
; γuε 6∈ E+

0

}
consists of positive equilibria only.

Proof. Let ε ∈ (−ε0, ε0) \ {0}. Since (nε, uε) satisfies

uε = Πuε(·, 0)γuε , γuε = nεQuεγuε ,

it follows that n−1
ε > 0 is an eigenvalue of Quε with eigenvector γuε ∈ Eς . By assumption there is

a corresponding positive eigenvector Buε and αε ∈ R \ {0} such that γuε = αεBuε . If αε > 0 then
γuε ∈ E+

0 and thus uε(a) ∈ E+
0 for each a ∈ J . Otherwise, if αε < 0, then −uε is a positive equilibrium

solution with parameter value nε due to γ(−uε) = −αεBuε ∈ E+
0 and owing to the symmetry conditions

put on A and `. �

Proposition 2.8 guarantees that a branch of positive equilibria bifurcates from the branch of trivial equi-
libria (n, u) = (n, 0), n ∈ R, at the critical value n = 1. Near the critical value n = 1 the set of n values
corresponding to positive equilibria on the branch from Theorem 2.4 consists of n values greater (i.e. su-
percritical bifurcation) or less (i.e. subcritical bifurcation) than 1 depending on the sign of κε = nε − 1
for ε > 0 sufficiently small. If m ≥ 2 in Theorem 2.4, this “direction of bifurcation”, that is, the cases
nε > 1 and nε < 1 for ε > 0 small, depends on the sign of κ′0 = ζ (if nonzero), which in turn depends on(
Du(A∗(0)

)
Π0(·, 0)B and D2

u`∗(0)[Π0(·, 0)B,Π0(·, 0)B] according to Proposition 2.6. Further, Propo-
sition 2.10 warrants under the symmetry conditions imposed that for any of the values nε 6= 1 there is a
positive nontrivial equilibrium. Examples to which Propositions 2.8 and 2.10 apply will be given in the next
section.
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Under additional assumptions we can get more information about the positive equilibria and the direction
of bifurcation. For simplicity we demonstrate this when ` is given by

`(u) :=
∫ am

0

b(u, a)u(a) da , u ∈ Σ , (2.24)

where b ∈ Cm(Σ, L+
p′(J)) with 1/p + 1/p′ = 1 and b(u, a) := b(u)(a). Then (2.4), (2.18), and (2.19)

clearly hold by putting

`0(u) :=
∫ am

0

b0(a)u(a) da , `∗(u) :=
∫ am

0

b∗(u, a)u(a) da (2.25)

for b0(a) := b(0, a) and b∗(u, a) := b(u, a) − b0(a). Let the assumptions of Proposition 2.8 be satisfied
and suppose that there exists ε∗ ∈ (0, ε0) such that (2.23) holds for ε ∈ (0, ε∗). Let (2.22) hold and, given
u ∈ Σ, assume that

Qu :=
∫ am

0

b(u, a)Πu(a, 0) da

belongs to K+(Eς). Note that Qu for u = 0 coincides with Q0 defined in (2.10). Set

Ni := inf
u∈Γ

r(Qu) , Ns := sup
u∈Γ

r(Qu) ,

where Γ :=
{
uε ; ε ∈ [0, ε∗)

}
. Then 0 ≤ Ni ≤ 1 ≤ Ns ≤ ∞ since r(Q0) = 1. Moreover,

n r(Qu) ≥ 1 for (n, u) ∈ Λ :=
{(
nε, uε

)
; ε ∈ [0, ε∗)

}
. (2.26)

Indeed, given (n, u) ∈ Λ \ {(1, 0)} we have u(a) = Πu(a, 0)u(0) for a ∈ J and

0 6= u(0) = n`(u) = nQuu(0) ,

that is, 1/n is an eigenvalue of Qu ∈ L(Eς), whence r(Qu) ≥ 1/n. Suppose in addition that

for each u ∈ Σ , r(Qu) > 0 is the only eigenvalue of Qu ∈ K+(Eς) with positive eigenvector . (2.27)

This holds, e.g., if Qu is strongly positive or irreducible. Then

n r(Qu) = 1 , (n, u) ∈ Λ . (2.28)

Furthermore, letting
[σi, σs] := clR

{
nε ; ε ∈ [0, ε∗)

}
,

it readily follows from (2.28) that

0 ≤ σi =
1
Ns
≤ 1 ≤ σs =

1
Ni
≤ ∞ . (2.29)

Therefore, under the assumptions of Proposition 2.8, (2.24), (2.27), and if r(Qu) ≤ 1 for u ∈ Σ, we have
Ns ≤ 1, hence 1 = Ns = σi and bifurcation must be supercritical in this case. Again, we refer to the next
section for concrete examples.

3. APPLICATIONS TO POPULATION DYNAMICS

We now apply the obtained results to problem (2.2), (2.3). Before considering concrete diffusion op-
erators in Examples 3.2-3.4, we first state in Example 3.1 some simple abstract conditions for A, µ, and
b under which the results of Section 2 apply. For simplicity we assume that A = A(u) does not depend
explicitly on age a, i.e. we do not consider here operators of the form A = A(u, a), though the examples
include an implicit local dependence A = A(u(a)) on age (see also Remark 3.5).
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3.1. Example. Suppose (2.21) and that the interior int(E+
ς ) of E+

ς is nonempty. Let

`(u) :=
∫ am

0

b(u, a)u(a) da .

As observed just previous to (2.25), ` satisfies (2.4), (2.18), and (2.19) provided that

b ∈ Cm
(
Σ, L+

p′(J)
)
, b0 := b(0) 6≡ 0 , (3.1)

for some m ≥ 1 and some ball Σ in E1 centered at 0 with radius R0 > 0. Moreover, regarding Proposi-
tion 2.6 we note that Du`∗(0) = 0. Let α ∈ [0, ς) and let Φ be the ball in Eα with center 0 and radius
R > 0. Let

A ∈ Cm(Φ,L(E1, E0)) (3.2)
be such that

−A(w) generates an analytic semigroup on E0 and is resolvent positive for each w ∈ Φ . (3.3)

Making R0 > 0 smaller if necessary it follows from the compact embedding Eς ↪−↪→ Eα (see for instance
[2, I.Thm.2.11.1]) and (2.1) analogously to [3, VII.Thm.6.2,VII.Thm.6.4] that the Nemitskii operator of A
(again labeled A), given by

A(u)(a) := A(u(a)) , a ∈ J , u ∈ Σ ,

belongs to Cm(Σ, L∞(J,L(E1, E0))). Since E1 ↪→ BUCς−δ(J,Eδ) for δ ∈ [0, ς) owing to (2.1) and the
interpolation inequality in [2, I.Thm.2.11.1], we deduce from (3.3) and Remark 2.9 that

[a 7→ A(u(a))] ∈ Cς−α(J,H(E1, E0))

generates a positive parabolic evolution operator UA(u)(a, σ) on E0 for each u ∈ Σ in the sense of [2,
II.Sect.2.1]. Set A0 := A(0) and note that−A0 is independent of age and thus simply generates an analytic
semigroup {e−aA0 ; a ≥ 0} on E0. Suppose there exist ω0 ≥ 0 and φ ∈ [0, π/2) such that ω0 > s(−A0)
and

ω0 +A0 ∈ BIP(E0;φ) , (3.4)
where s(−A0) denotes the spectral bound of −A0 introduced at the beginning of Section 2. Moreover,
suppose that

e−aA0 ∈ L(Eς) is strongly positive for a > 0 , (3.5)
that is, e−aA0 maps E+

ς \ {0} into the interior of E+
ς . If µ is a function such that

[u 7→ µ(u, ·)] ∈ Cm(Σ, L+
∞(J)) , (3.6)

we set µ0(a) := µ(0, a) for a ∈ J and further suppose that

µ0 ∈ BUC(J) , inf
a∈J

µ0(a) > ω0 , (3.7)

and
lim
a→∞

µ0(a) exists if am =∞ . (3.8)

Put A(u, a) := µ(u, a) +A(u(a)) for a ∈ J , u ∈ Σ and note that

A0(a) := A(0, a) = µ0(a) +A0 , a ∈ J .
Clearly, A(u, ·) generates a positive parabolic evolution operator Πu(a, σ) on E0 for each u ∈ Σ given by

Πu(a, σ) := e−
∫ a
σ
µ(u,r)dr UA(u)(a, σ) , 0 ≤ σ ≤ a < am ,

where for u ≡ 0 we have

Π0(a, σ) = e−
∫ a
σ
µ0(r)dr e−(a−σ)A0 , 0 ≤ σ ≤ a < am .

From (3.4), (3.7), and [2, III.Cor.4.8.6] it follows that we may apply Remark 2.3(b) to conclude that (2.15)
holds true provided E0 is a UMD space. Lemma 2.2 then guarantees that A satisfies (2.5).
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Finally, let Q0 ∈ K+(Eς) be given by

Q0 :=
∫ am

0

b0(a) e−
∫ a
0 µ0(r)dr e−aA0 da

and note that Q0 ∈ K(Eς) is strongly positive, hence irreducible (see [11, Sect.12]). Indeed, let f ′ be any
nontrivial element of the dual cone

(E+
ς )′ := {f ′ ∈ E′ς ; 〈f ′, h〉 ≥ 0 for all h ∈ E+

ς } ,

where 〈·, ·〉 denotes the duality pairing in E′ς ×Eς , and let h ∈ E+
ς \{0}. Then 〈f ′, e−aA0h〉 > 0 for a > 0

since e−aA0h is an interior point of E+
ς due to (3.5), and thus

〈f ′, Q0h〉 =
∫ am

0

b0(a) e−
∫ a
0 µ0(r)dr 〈f ′, e−aA0h〉da > 0 ,

owing to b0 6≡ 0. Hence Q0h is a quasi-interior point of E+
ς for each h ∈ E+

ς \ {0} by definition and thus
an interior point of E+

ς according to [6, Prop.A.2.10] since the interior of E+
ς is nonempty. Thus Q0 is

strongly positive. In particular, it follows from the Krein-Rutman theorem [11, Thm.12.3] that r(Q0) > 0
is a simple eigenvalue ofQ0 with a corresponding eigenvectorB ∈ int(E+

ς ) (and this is the only eigenvalue
with a positive eigenvector). For convenience we assume b0 to be normalized such that r(Q0) = 1.

Combining Lemma 2.2, Remark 2.3, Proposition 2.8, and Theorem 2.4 we obtain:

Theorem 3.1. Let E0 be a UMD space satisfying (2.21) and let int(E+
ς ) 6= ∅. Suppose (3.1)-(3.8) and let

b0 be normalized such that r(Q0) = 1. Then the problem

∂au+A(u(a))u+ µ(u, a)u = 0 , a ∈ J ,

u(0) = n

∫ am

0

b(u, a)u(a) da ,

has a branch of nontrivial solutions
(
nε, uε

)
∈ R+ × E1, 0 < |ε| < ε0, of the form

nε = 1 + κε , uε = ε
(
Π0(·, 0)B + zε

)
such that [ε 7→ κε] : (−ε0, ε0) → R and [ε 7→ zε] : (−ε0, ε0) → E1 are m-times continuously differen-
tiable with κ0 = 0, z0 = 0. If ε > 0 is sufficiently small, then uε(a) ∈ E+

ς for a ∈ J .

If, in addition, the symmetry conditions

A(−u) = A(u) , µ(−u, ·) = µ(u, ·) , b(−u, ·) = b(u, ·) (3.9)

hold for u ∈ Σ and if

Qu :=
∫ am

0

b(u, a) e−
∫ a
0 µ(u,r)dr UA(u)(a, 0) da

for u ∈ Σ is such that Qu ∈ L+(Eς) and

any positive eigenvalue of Qu has geometric multiplicity 1
and possesses a corresponding positive eigenvector ,

(3.10)

then it follows from Proposition 2.10:

Corollary 3.2. Suppose the assumptions of Theorem 3.1 together with (3.9), (3.10). Then, for each parame-
ter value nε with ε ∈ (−ε0, ε0)\{0} provided by Theorem 3.1, there exists a positive nontrivial equilibrium
solution of the form uε or −uε.
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3.2. Example. We now consider concrete diffusion operators to which Example 3.1 apply. Let Ω ⊂ RN ,
N ≥ 1, be a bounded and smooth domain lying locally on one side of ∂Ω. Let ∂Ω = Γ0∪Γ1, where Γ0,Γ1

are both open and closed in ∂Ω and Γ0 ∩ Γ1 = ∅. Consider

A(u, x)w := −∇x ·
(

a(u, x)∇xw
)

+ a1(u, x) · ∇xw + a0(u, x)w ,

where
[u 7→ a(u, ·)] ∈ Cm

(
Φ, C1+σ(Ω̄)

)
,

[u 7→ a1(u, ·)] ∈ Cm
(
Φ, Cσ(Ω̄,RN )

)
, [u 7→ a0(u, ·)] ∈ Cm

(
Φ, Cσ(Ω̄)

)
,

(3.11)

for some m ≥ 1, σ ∈ (0, 1) small, and some open ball Φ in C1+σ(Ω̄) around 0. Moreover, assume the
ellipticity condition

a(u, x) > 0 , x ∈ Ω̄ , u ∈ Φ . (3.12)

Let
ν0 ∈ C1(Γ1) (3.13)

and let ν denote the outward unit normal to Γ1. Let

B(x)w :=
{
w , on Γ0 ,
∂
∂νw + ν0(x)w , on Γ1 .

Fix p ∈ (N + 2,∞) and let E0 := Lp(Ω) be ordered by its positive cone of functions that are nonnegative
almost everywhere. Note that E0 is a UMD-space according to [2, III.Thm.4.5.2]. Set E1 := W 2

p,B(Ω),
where

W 2ξ
p,B(Ω) :=


W 2ξ
p (Ω) , 0 < 2ξ < 1/p ,{
w ∈W 2ξ

p (Ω) ; w|Γ0 = 0
}
, 1/p < 2ξ < 1 + 1/p ,{

w ∈W 2ξ
p (Ω) ; Bw = 0

}
, 2ξ > 1 + 1/p ,

are subspaces of the usual Sobolev-Slobodeckii spaces W 2ξ
p (Ω). Recall that if Eξ := (E0, E1)ξ,p denotes

the real interpolation space, then

Eς =̇W 2ς
p,B ↪−↪→ Eα =̇W 2α

p,B ↪→ C1+σ(Ω̄) , 1 +N/p+ σ < 2α < 2ς := 2(1− 1/p) ,

where dots indicate equivalent norms (see [28, 4.3.3.Thm.] for the interpolation result and [2, I.Thm.2.11.1]
for the compact embedding). Also note that int(E+

ς ) 6= ∅ (see [11, Sect.13]). We point out that (A(u, ·),B)
for u ∈ C1+σ(Ω̄) fixed is a regular elliptic boundary value problem as studied in [1]. Set

A(u)w := A(u, ·)w , w ∈ E1 , u ∈ Φ .

Then (3.11), (3.12), and [1, Sect.7,Thm.11.1] imply that −A(u) generates an analytic semigroup on Lp(Ω)
and is resolvent positive, whence (3.2) and (3.3) hold. Moreover, suppose that

a0(0, x) ≥ 0 , a1(0, x) = 0 , x ∈ Ω̄ ,

ν0(x) ≥ 0 , x ∈ Γ1 ,
(3.14)

and put A0 := A(0). According to [1, Thm.7.1,Thm.11.1,Thm.12.1], −A0 is resolvent positive and gen-
erates a contraction semigroup on each Lq(Ω), 1 < q < ∞, is self-adjoint in L2(Ω), and there exists a
largest eigenvalue λ0 ≤ 0 of −A0 ∈ L(E1, E0) with a positive eigenfunction B ∈ E+

ς . Moreover, [11,
Cor.13.6] ensures (3.5). Hence we now are in the siutation of [2, III.Ex.4.7.3(d)] and thus deduce (3.4) for
each ω0 > 0. Given am ∈ (0,∞] and some open ball Σ in E1 = Lp(J,W 2

p,B(Ω))∩W 1
p (J, Lp(Ω)) centered

at 0 suppose that
µ satisfies (3.6) , (3.7) with ω0 = 0 , and (3.8) . (3.15)

Thus, if b0 := b(0, ·) for b := [u 7→ b(u, ·)] ∈ Cm(Σ, L+
p′(J)) is nontrivial and normalized such that∫ am

0

b0(a) e−
∫ a
0 µ0(r)dr eλ0a da = 1 , (3.16)
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then e−aA0B = eaλ0B for a ≥ 0 (being due a simple uniqueness argument) entails Q0B = B, where

Q0 =
∫ am

0

b0(a) e−
∫ a
0 µ0(r)dr e−aA0 da ∈ K+(Eς)

is strongly positive due to (3.5) as shown in Example 3.1. Thus r(Q0) = 1 by the Krein-Rutman theorem
since r(Q0) is the only eigenvalue with positive eigenfunction. Therefore, (3.1)-(3.8) hold and Theorem 3.1
entails:

Proposition 3.3. Let p ∈ (N + 2,∞) and suppose (3.1), (3.11)-(3.16). Then the problem

∂au+A
(
u(a), x

)
u+ µ(u, a)u = 0 , a ∈ J , x ∈ Ω ,

u(0, x) = n

∫ ∞
0

b(u, a)u(a, x) da , x ∈ Ω ,

B(x)u(a, x) = 0 , a > 0 , x ∈ ∂Ω ,

has a branch of nontrivial solutions(
nε, uε

)
∈ R+ ×

(
Lp(J,W 2

p,B(Ω)) ∩W 1
p (J, Lp(Ω))

)
, 0 < |ε| < ε0 ,

of the form

uε(a, ·) = ε
(
e−

∫ a
0 µ0(r)dr e−aA0B + zε

)
, zε ∈ Lp(J,W 2

p,B(Ω)) ∩W 1
p (J, Lp(Ω)) ,

bifurcating from (n, u) = (1, 0), such that uε(a) ∈ L+
p (Ω) for a ∈ J and ε > 0 small.

Remark 3.4. The proposition above also holds if E0 := Lq(Ω) and E1 := W 2
q,B(Ω) for q > N + 2

different from an arbitrary p ∈ (1,∞). The only difference is that the interpolation space Eς equals a
subspace of the Besov space B2ς

q,p(Ω) (see [28, 4.3.3.Thm.]).

3.3. Example. We may also consider a functional dependence of A on u. Indeed, let again am ∈ (0,∞]
and let Ω, E1, and E0 be as in Example 3.2 with p ∈ (N + 2,∞) arbitrary. Given u ∈ E1 ↪→ L1(J, Lp(Ω))
let U :=

∫ am
0

u(a)da and consider A(u)w := A(U, ·)w for w ∈ E1 = W 2
p,B(Ω) with A, B again as in

Example 3.2 satisfying (3.11)-(3.14) but Φ in (3.11) is now an open ball in Lp(Ω) centered at 0. Suppose
(3.15) with infa∈J µ(u, a) > s(−A(u)) for u ∈ Σ and suppose b ∈ Cm(Σ, L+

p′(J)) with (3.16). Moreover,
assume that b(u) 6≡ 0. Note that A0 := A(0) + µ(0, ·) is exactly the same operator as in Example 3.2 and
hence has the same properties as derived there. As in Example 3.1 we deduce that

Qu :=
∫ am

0

b(u, a) e−
∫ a
0 µ(u,r)dr e−aA(u) da ∈ K+(Eς)

is strongly positive for each u ∈ Σ, hence (2.27) holds by [11, Thm.12.3, Cor.13.6]. Exactly as in Exam-
ples 3.1 and 3.2 we obtain that all the assumptions of Theorem 2.4 and Proposition 2.8 hold and thus there
is a branch of nontrivial solutions(

nε, uε
)
∈ R+ ×

(
Lp(J,W 2

p,B(Ω)) ∩W 1
p (J, Lp(Ω))

)
, 0 < |ε| < ε0 ,

to the problem

∂au+A(U, x)u+ µ(u, a)u = 0 , a ∈ J , x ∈ Ω ,

u(0, x) = n

∫ am

0

b(u, a)u(a, x) da , x ∈ Ω ,

B(x)u(a, x) = 0 , a > 0 , x ∈ ∂Ω ,

U(x) =
∫ am

0

u(a, x) da , x ∈ Ω ,
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bifurcating from (n, u) = (1, 0), such that uε is positive for ε > 0 sufficiently small. If λ0(u) denotes the
largest eigenvalue of −A(u) ∈ L(E1, E0) for u ∈ Σ and if∫ am

0

b(u, a) e−
∫ a
0 µ(u,r)dr eaλ0(u) da ≤ 1 , u ∈ Σ , (3.17)

we claim that
r(Qu) ≤ 1 , u ∈ Σ .

Indeed, if Bu is a positive eigenfunction corresponding to the eigenvalue λ0(u) of −A(u), then we have
e−aA(u)Bu = eλ(u)aBu for a ≥ 0, hence

QuBu =
∫ am

0

b(u, a) e−
∫ a
0 µ(u,r)dr eλ0(u)a daBu ,

from which we conclude that r(Qu) equals the left hand side of (3.17) in view of (2.27). Recalling (2.29)
we deduce that bifurcation must be supercritical provided (3.17) holds; that is, for ε ≥ 0 small we have
nε ≥ 1 and uε is nonnegative. Note that λ0(u) ≤ 0 if a0(u, ·) ≥ 0 and a0(u, ·) − div(a1(u, ·)) ≥ 0 in
Ω, ν0 ≥ 0 and a1(u, ·) · ν ≥ 0 on Γ1 (see [1, Rem.11.3]) in which case the term eλ0(u)a in (3.17) can be
neglected. Moreover, s(−A(u)) ≤ 0 in this case by definition of the spectral bound. If the functions a, a1,
a0 as well as µ and b are symmetric with respect to u, that is, if a(u, ·) = a(−u, ·) etc., then Proposition 2.10
entails that there is a positive equilibrium solution for any value of nε, −ε0 < ε < ε0.

3.4. Example. We give some more details on the example presented in the introduction. Let am ∈ (0,∞)
and let Ω ⊂ RN , N ≥ 1, be a bounded and smooth domain. For p ∈ (N + 2,∞) put

E1 := W 2
p,B(Ω) := {v ∈W 2

p (Ω) ; ∂νv = 0} ↪−↪→ E0 := Lp(Ω) ,

E1 := Lp(J,W 2
p,B(Ω)) ∩W 1

p (J, Lp(Ω)) .

Let a ∈ C3(R) satisfy the ellipticity condition a(z) ≥ a > 0, z ∈ R. Given u ∈ E1 ↪→ L1(J,W 2
p,B(Ω))

set U :=
∫ am

0
u(a, ·)da ∈W 2

p,B(Ω) and define

A(u)w := −∇x ·
(

a(U)∇xw
)
, w ∈ E1 = W 2

p,B(Ω) ,

so that (1.12)-(1.15) can be considered as equations in E0 = Lp(Ω) for u : J → Lp(Ω):

∂au+A(u)u+ µ(u, a)u = 0 , a ∈ (0, am) ,

u(0) = n

∫ am

0

b(u, a)u(a) da .
(3.18)

Observe that

W 2
p,B(Ω) ↪→ Eς :=

(
Lp(Ω),W 2

p,B
)

1−1/p,p

.= W
2(1−1/p)
p,B ↪→ C1(Ω̄) , p > N + 2 , (3.19)

where the interpolation result follows from [28, 4.3.3.Thm.]. Thus A ∈ C1(E1,L(W 2
p,B(Ω), Lp(Ω))).

Furthermore, for each u ∈ E1, −A(u) generates a positive analytic semigroup {e−aA(u) ; a ≥ 0} of con-
tractions on E0 = Lp(Ω) (see [1, Sect.7,Thm.11.1]), whence (3.3) holds. Note that the spectral bound
s(−A(u)) of −A(u) equals 0 since constants are eigenfunctions owing to the Neumann boundary condi-
tions. Let Σ be some open ball in E1 around 0. Suppose µ satisfies (3.6) and µ0 := µ(0) satisfies (3.7) with
ω0 = 0 and (3.8). Further, let b ∈ Cm

(
Σ, L+

p′(J)
)

with b0 := b(0) 6≡ 0 be normalized such that∫ am

0

b0(a) e−
∫ a
0 µ0(r)dr da = 1 . (3.20)

Observe that
A0 := A0 + µ0 := A(0) + µ(0, ·)

is a special case of the operators considered in Examples 3.1 and 3.2 and so has the properties derived there.
Thus (2.17) holds due to Lemma 2.2 as shown in Example 3.1. Further, (2.4), (2.18), and (2.19) are satisfied
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as noted just previous to (2.25). Next, for B := 1, we have e−aA0B = B, a ≥ 0, and thus Q0B = B by
(3.20), where

Q0 :=
∫ am

0

b0(a) e−
∫ a
0 µ0(r)dr e−aA0 da ∈ K+(Eς) .

Moreover, Q0 is a strongly positive compact operator (see Example 3.1) and int(E+
ς ) 6= ∅ due to (3.19).

Since r(Q0) is the only eigenvalue of Q0 with positive eigenfunction in the (nonempty) interior of the
positive cone E+

ς according to [11, Thm.12.3], we conclude r(Q0) = 1. Therefore, we are now in a
position to apply Theorem 2.4 and Proposition 2.8 and conclude that problem (3.18) admits of a branch of
nontrivial solutions(

nε, uε
)
∈ R+ ×

(
Lp(J,W 2

p,B(Ω)) ∩W 1
p (J, Lp(Ω))

)
, 0 < |ε| < ε0 ,

of the form

uε(a, ·) = ε
(
e−

∫ a
0 µ0(r)dr e−aA0B + zε

)
, zε ∈ Lp(J,W 2

p,B(Ω)) ∩W 1
p (J, Lp(Ω)) ,

bifurcating from (n, u) = (1, 0) such that uε(a) ∈ L+
p (Ω) for a ∈ [0, am) and ε > 0 small.

However, if (n, u) is any positive solution to problem (3.18), then the relation u(0) = nQuu(0) must
hold, where

Qu :=
∫ am

0

b(u, a) e−
∫ a
0 µ(u,r)dr e−aA(u) da .

Therefore, owing to the fact that dispersal alone does not alter the number of individuals, i.e.∫
Ω

e−aA(u)φdx =
∫

Ω

φdx , φ ∈ Lp(Ω) , (3.21)

it follows by integrating the relation u(0) = nQuu(0) that necessarily

1 = n

∫ am

0

b(u, a) e−
∫ a
0 µ(u,r)dr da =: n q(u) , (3.22)

for any positive solution (n, u) to (3.18), which is the same constraint as in the non-diffusive case (see [8]).
This allows us to say more about the direction of bifurcation in a particular situation. Indeed, assume further
that

b(u, a) ≤ b(0, a) = b0(a) , µ(u, a) ≥ µ(0, a) = µ0(a) (3.23)
for a ∈ J and u ∈ E+

1 , which is a common modeling assumption stating that effects of population densities
do neither increase fertility nor decrease mortality. Then q(uε) ≤ q(0) = 1 in view of (3.20) for the
positive solution (nε, uε), ε > 0 small, provided by Theorem 3.1. Thus (3.22) entails nε ≥ 1 for ε > 0
small, that is, bifurcation must be supercritical, and there is no equilibrium solution other than the trivial
u ≡ 0 corresponding to a parameter value n < 1.

We shall point out that the present example simply reflects the non-diffusive case in the sense that our
results here could actually be derived from the case A ≡ 0 (see [8]). For this it is enough to observe that
λ0 = 0 is an eigenvalue of −A(u) with corresponding constant eigenfunctions.

Moreover, taking B = 1 we have Π0(a, 0)B = e−
∫ a
0 µ0(s)ds and since the projection onto N in Propo-

sition 2.6 is given by

1− PM =
[
w 7→ 1

|Ω|

∫
Ω

w(x) dx
]
,

the direction of bifurcation, given by ζ in Proposition 2.6, can in principle be computed explicitly using
(3.21) also if one does not assume (3.23).

Remark 3.5. In all our examples we omitted a dependence of µ and b on the spatial variable x for sim-
plicity. It is clear though that such a dependence can be included as well. Moreover, we omitted an explicit
dependence of the diffusion operator on the age variable. However, the results of Section 2 clearly ap-
ply to operators of the form A = A(u, a) as well provided the dependence on a is suitable, e.g. Hölder
continuous, see Remarks 2.3(a).
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