STEADY STATES FOR A COAGULATION-FRAGMENTATION EQUATION
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ABSTRACT. A coagulation-fragmentation equation including volume scattering and collisional
breakage is considered. We prove that the equation admits steady states of arbitrary mass
provided that the kernels satisfy some suitable growth conditions. On the other hand, we also
show that zero is the only steady state in particular cases.

1. INTRODUCTION

The aim of this paper is to investigate the existence of steady states to a coagulation-fragmenta-
tion equation including a volume scattering effect. Recall that coagulation-fragmentation models
describe the time evolution of a system consisting of a very large number of particles, which can
either coalesce to form larger particles or split into smaller ones. Usually, these particles are
supposed to be identified by their size (mass, volume) only, which, in the conventional continuous
models, might be any positive real number. The model considered in the present paper pays
attention to the obvious fact that there are no arbitrarily large particles in nature, i.e., a maximal
particle size yo € (0, 00) is introduced beyond which no particle can survive. This feature requires
an additional mechanism, called scattering in the sequel, preventing the occurrence of particles
of size larger than the maximal size yo [6]. Besides this scattering phenomenon, the subsequent
model also includes the possibility of collisional breakage.

Denoting by f(t,y) > 0 the density of particles of size y € Y := (0,y0) at time ¢t > 0 (per
unit volume), the evolution of the system of particles undergoing simultaneously coagulation and
fragmentation can be described by the equation

atf L(f) ’ (tay) € (0,00) xY ’
f(oay) = fO(y); erﬂ

where fy is a given initial distribution. The reaction terms L(f) := Ly(f) + Lc(f) + Ls(f) are
defined by

(1.1)

L(f)(y) = / o) 160 = 10) [ ) d
L(f)(y) = % /Oy KW', y—v) P',y—v) flu—v) fy) dy’
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for y € Y, and describe the following reactions:

e The linear operator L, (f) accounts for the gain and loss of particles of size y due to multiple
spontaneous breakage, where v(y,y') > 0 denotes the rate at which a particle of size y € Y’
decays into a particle of size y' € (0,v).

e Furthermore, two particles y and y' with cumulative size y + y' < yo can collide at a rate
K(y,y") > 0 and either nothing happens — meaning that the involved particles remain
unchanged, for instance, in case of grazing particles — or then they merge with probability
P(y,y"), or, in case of high-energy collisions, shatter with probability Q(y,y’) into several
particles according to the shattering distribution Bc(y + y',y"") (the latter process is also
referred to as collisional breakage). Consistency of the model then demands

0<P(y,y)+Qw,y) <1, y+y <uwo- (1.2)

These processes are reflected by the operator L¢(f).

e Finally, the scattering operator L¢(f) represents the interaction of two particles y and y’
with cumulative size beyond the maximal size yo. They can coalesce but the resulting
particle instantaneously splits into particles all with size within the admissible range Y.
The daughter particles are then distributed according to Bs(y +y',y"”) > 0. We refer to [6],
where the volume scattering mechanism has been introduced for the first time (see also [5]
for a more detailed discussion on the modelling issue).

Since there is no particle in- nor outlet, one intuitively expects the total mass to be preserved
during time, i.e.

Yo Yo
/ y f(t,y) dy:/ y foly) dy, t>0. (1.3)
0 0

Provided that the shattering and the scattering processes are mass preserving (see assumptions
(1.10) and (1.12)), this is indeed the case.

From a mathematical viewpoint, some properties of the coagulation-fragmentation equation
with volume scattering (1.1) have been investigated recently: in particular, results concerning the
well-posedness of (1.1) are to be found in [3, 6, 14, 15] while results on the large time behaviour of
the solutions in some cases have been obtained in [16]. As for numerical simulations, we refer to
[12]. We also mention at this point that, formally, the classical coagulation-fragmentation model
usually contemplated in the literature can be derived from (1.1) by putting yo := co and P =1
(implying @ = 0 according to (1.2)). In particular, the shattering and scattering terms vanish in
this case. A survey of the present state of knowledge on the classical coagulation-fragmentation
equations and references to further literature for this case can be found in [2, 11].

In the present paper, we will focus on existence of non-trivial steady states to (1.1), that is, on
non-zero solutions to the equation
L(fy)=0in Y. (1.4)
Addressing this issue is mainly motivated by the study of the asymptotic behaviour of solutions to
(1.1). Note that the equality (1.3) entails a natural side condition, namely to solve (1.4) subject
to

0= / “y fw) dy (1.5)

where ¢ > 0 is a given positive real number. Let us point out right now that (1.4), (1.5) does not
always possess solutions for ¢ > 0. In particular, if v = 0 and merely binary shattering and binary
scattering are taken into account, zero is the only steady state (see section 4). So far, existence of
solutions to (1.4) apart from zero is known only if the kernels satisfy an extended version of the
so-called detailed balance condition [15, 16], namely that there exists H € L'(Y’) such that

Yy+y'y) Hy+y') = P(y,y') K(y,y') H(y) H(y')



for 0 <y + 9" < yo, that

Be(y,y') Q" y —y") K"y —y") Hy") H(y —y")

= B(y,y") QW\y—y) K(y',y—y') Hy') H(y —y")

for 0 <y+vy',y+y"” <yo and that

Bs(y,y") K(y",y —y") Hy") H(y —y") = Bs(y,y") K,y —y") HY') H(y —y')
for 0 < y —yo < 9',y" < yo. In this case, each function f,(y) := H(y)a?, y € Y, with a > 0
satisfies (1.4). For the classical coagulation-fragmentation equation, that is, equation (1.1) with
yo = oo and P = 1, this condition has previously been used in various papers (for instance, see
[1, 7, 9, 10]) and the long time behaviour of solutions has been investigated. That the latter
equation admits non-trivial and smooth steady state solutions of arbitrary mass without assuming

the detailed balance condition has been proven in [8] for constant fragmentation kernels v and
coagulation kernels

K(y,y)=a+by+y), vy >0,
with a, b > 0. More recently, existence of non-trivial stationary solutions (in a weak sense) is shown
for kernels of the form
v(y,y")=y"BWy'/y) . K(y,y)=y"u")" +y" )"

with -1 <a<0<v <1 a+v € [0,1), 0 > —1, and some suitable function B [4]. To
the best of our knowledge, these are the only available results on existence of steady states for
the classical coagulation-fragmentation equation (yo = oo, P = 1) in the absence of the detailed
balance condition.

As for (1.4), (1.5), no result seems to be known but the existence of steady states is strongly sup-
ported by the numerical simulations in [12]. In this paper, we identify a class of data (v, K, S, fs)
for which (1.4), (1.5) has at least one solution for every ¢ > 0. Before stating precisely our as-
sumptions, let us first outline the approach we employ to solve (1.4), (1.5): in such a situation,
a natural tool is the Schauder fixed point theorem, but its application requires some strong com-
pactness which is not likely to be available here. Indeed, the operator L is an integral operator
and does not seem to be compact. To overcome this difficulty, we consider the regularised problem
—e f" = L(f) in Y with suitable boundary conditions, where f" denotes the second derivative
of f and € € (0,1). It is then possible to use the Schauder fixed point theorem to establish the
existence of a solution f. to this problem which satisfies (1.5). The next step is to show that (f.) is
relatively weakly sequentially compact in L!(Y) and that its cluster points for this topology solve
(1.4), (1.5). Let us further mention that another way to remedy to the lack of strong compactness
properties of L has been developed in [4] and relies on the Tychonov fixed point theorem which
only demands weak compactness.

The assumptions made throughout this paper are as follows. We suppose that the coagulation
kernel K belongs to L*°(Y x Y) and satisfies

Ki(yy')” < K(y,y') = K(y',y) < K*(yy')", (9,4) €Y xY, (1.6)
for some K,,K* > 0, o € [0,1] and the monotonicity condition
K(y—y,y) <K(y,y) for 0<y <y<yo- (L.7)

The probabilities P and () are non-negative symmetric functions defined on
E={(y,y) €Y xY;y+y <wyo}
obeying (1.2) and there is P, € (0,1) such that

Py,y)+2Q(y,y') >P.>0 foraa. (y,y)€e=. (1.8)
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In addition, P satisfies the monotonicity condition
Ply—vy',y") < P(y,y') foraa. (y,9')€Z with 0<y' <y<uyo. (1.9)

The fragmentation kernel « and the shattering distribution 8. are non-negative measurable func-
tions defined on

A={(y,y) €Y xY;0<y <y<wo},
and shattering is supposed to be a mass preserving process, that is,

y+y'
Qy,y") (/ y' By +y',y") dy" —y - y') =0 foraa. (y,5')€E. (1.10)
0

We also assume that shattering is suitably dominated by coagulation, i.e., we assume that there
exist zg € Y and kg > 0 with

y+y’
Qy,y") / By +y'y") dy" < P(y,y")+2Q(y,y') — ko foraa. y+y <z . (1.11)
0

The scattering kernel 35 is a non-negative measurable function defined on (yo, 2yo) X (0,yo) and
satisfies

Yo
/ y' Bs(y,y') dy' =y for a.a. y € (yo,2y0) - (1.12)
0
Finally, we suppose that there are p > 1 and p.,, fic, ps > 0 such that
y
/ W) ) y(y,y P dy’ < p, foraa yev, (1.13)
0
y+y'
Qy,y) / ") By +y,y")? dy” < pe  foraa. (y,y) €E, (1.14)
0
Yo
/ ()P By(y,y')? dy' < ps foraa. y€ (yo,2y0) .  (1.15)
0
Note that (1.13)-(1.15) and Holder’s inequality imply
y
/ Y(,y") dy’ < myy® foraa yevy, (1.16)
0
y+y'
Q(y,y')/ Bely+vy',y") dy" < me  foraa. (y,4')€E, (1.17)
0
Yo
Bs(y,y') dy' < ms for a.a. y € (yo,2y0) , (1.18)

0
for some constants m., mc,ms > 0.

Possible (and reasonable) choices of kernels obeying all of the assumptions above are as follows:
suppose that K is of the form

K(y,y") == A+ Byy")’ + Cly + y')*
with A > 0 and B,C, 6, u > 0. Let P and @) be non-negative functions such that, for some 7,q > 0,
Qy.y) =aly+y)", y+y <wo,
and such that (1.2), (1.8) and (1.9) hold. For 4, > 0 and 0 > (,&,v > —1 define
1yy') =3y ),
Be(y,y') = (
Bs(y.y') = (



We may then choose p € (1,14 7) with —1/p < min{v,{,{,a — 1} so that all assumptions are
satisfied with ¢ := 0.

On the other hand, if K(y,y') := K(yy')°, o € (0,1], K > 0, and if P,Q,~, S, 3s are as above
with additionally o > ¢ and 1+ ¢ > o, we find again p > 1 small such that (1.13)-(1.15) hold.

Our main result then reads:

Theorem 1.1. Let (1.6)-(1.15) hold. Then, given any ¢ > 0, there exists a non-negative function
f € LL(Y,y°dy) satisfying L(f) =0 a.e. inY and

Yo
/0 y fly)dy=o,

where L (Y,y°dy) denotes the positive cone of L*(Y,y’dy).

Recall that the positive cone L} (Y, y7dy) of L'(Y,y°dy) is the set of functions of L*(Y,y"dy)
which are non-negative almost everywhere in Y.

The solution f to (1.4), (1.5) we construct in Theorem 1.1 actually belongs to LP(Y,y?dy), but
it is yet unclear whether f enjoys additional regularity properties. Also, uniqueness of a solution

o (1.4), (1.5) does not seem to be obvious.

As already mentioned, the main idea in order to prove this theorem is to consider first a
parameter-dependent regularised problem, which can be solved by a Schauder fixed point argu-
ment, and to show afterwards that the family of solutions is weakly compact in LP(Y,y?dy). This
then guarantees the existence of non-trivial steady states. In the next section we state and solve
the regularised problem. Subsequently, we derive in section 3 some uniform estimates leading to
the desired weak compactness. In the concluding section 4 we show that problem (1.4), (1.5) does
not necessarily have a solution.

2. A REGULARISED PROBLEM: EXISTENCE

Note that (1.6), (1.16), (1.17) and (1.18) imply, for f € L'(Y,y° dy), that the reaction terms
Ly(f), Lc(f) and Lg(f) belong to L*(Y). In addition, given ¢ € L>=(Y), we have the identities
(see [14, Lemma 2.6] or [15, Lemma 2.7])

" 0) Lo(H) dy = / U e -2 zp(y)] W) W)y, (21)
0
Yo Yo Yo— y
Cow rnwma =5 [ / o) Klyy') 1) 6 ddy . (22)
T L@ d =5 [ b Ko 50 S0 v, 23)
0 0 Yo~y

where

Ye(y,y') = Py,y') vy +y") — [Py, y") + Qy,4)] [¥(y) + ¥(y")]
+Q(y,y") /0y+y V(") Bely+y',y") dy" |

Ys(y,y') = " V(") Bsty +v'sy") dy" —p(y) — (') -

0
If f € LY(Y;y*dy) for some q € [1,00) and k € R, we define

M o(f) = /y ') dy  and Me(f) = Mia(f) .

Given ¢ € (0,1), we set

Ks(y,y') = K(y,y') + 9,
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and notice that
1Ko < [[KJoo +1 -

Hereafter, we denote by Ls(f) the reaction terms L(f) but with Ky instead of K. For ¢ € (0,0)
and g € (0,00) we define

oo Il
3

1 .
+m,y§ and R:= I (6045w’ y5 0+3|Ksllwo yo 0°) - (2.4)

€Yo
We next introduce

F(f) = p=(f) Ls(f) +w* f
for f € L1 (Y), where

1
we(f) = m )

and observe that F(f) belongs to L!(Y). We then denote by uy the unique solution in W2(Y)
to the boundary-value problem

—euf+w’ur =F(f) in Y, (2.5)
us(0) = yo uf(yo) —uys(yo) =0 .
Finally, let C be the subset of L!(Y) defined by
C:={feLi(Y); Mi(f) =0, Mo(f) <R} . 2.7)

Clearly, C is a non-empty, bounded and closed convex subset of L}(Y). In addition, we have the
following property:

Lemma 2.1. If f € C, thenuy € C.

Proof. Since f > 0, it follows from (1.2), (1.6) and (1.16) that

FHG) > « 1) - 0o(f) 1) ( / % Vw,y) dy + Ks(w,9') £ dy')
> w? f(y) = () ) (my y§ + | Kslloo Mo(f))
> 0.

The comparison principle then entails that uy > 0. We next readily infer from (1.10), (1.12) and
(2.1)-(2.3) that

Yo
| v P dy=u7 2aa()
0
while (2.6) yields that
Yo
—6/ y u(y) dy = 0.
0
Consequently, we deduce from (2.5) after multiplication by y and integration over Y the equality

My (uy) = My(f).
We now multiply (2.5) by ° and integrate over Y. Observe that

Yo
—/ y* uf(y) dy = 2 y§ us(yo) — 6 Mi(uy)
0
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by (2.6), while (1.2), (1.10), (1.12) and (2.1)-(2.3) yield

Yo
/0 y? F(f)(y) dy
Yo Yo— y
<w?® M3(f) + 3 ”Kdllm / / (v’ y' +yy”?) Ply,y') fly) f¥') dy'dy
1 K5l oo vo [y N2 vty " 1o n_ .3 _ .13
+ sos(f)/o /0 (y+y) /0 y' By +y'y") dy' —y y]
x Qy,y") fly) f(¥') dy'dy
+ % e (f) /yo /yo [yg /yo y" Bs(y+y'sy") dy”—yg—y’3] fly) F(y') dy'dy
Yyo—yY
Yo Yyo— y
<w? g Mi(f) + 3”K6”°° / / v’y +yy?) fly) ') dy'dy
||K6||oo vo vo ! !
+ +y')3 — g3 — dy'd
//yoyyy v —y"®] fly) fy') dy'dy

9 Yo Yo , , ,
<w’ yg 0+ 3 IKslloo we(f) A v’y fly) fy) dy'dy

<w? ys 0+ 3 ||Kslloo %o ©° -

Therefore, we obtain

2eyp ur(yo) <6e0+w yg o+ 3 K5l yo 0 -
On the other hand, due to

/Oyo y? F(f)(y) dy
> —.(f) /Oyo /Oyy v v(y,y") dy' f(y) dy

() /Oy" /0y°_y(y2 +y?) Ks(y,y') {P(y,y) + Qy, ")} f('

2
) [T e o ,
2 /0 /yo_y(y +97) Ks(y,y') f(y') fy) dy'dy
> —my o™ Mi(f) — 0 yo || Kslloo %

and
Yo
—/ y> ui(y) dy = yo us(yo) — 2 Mo(uy) ,
0

we deduce from (2.5) that

£ yo ur(yo) — 2 € Mo(ug) + w? Ma(ug) > —my 5™ 0— 0 4o .

Consequently, taking into account (2.8) and the definition of w, we end up with

o Ké oo
2 e My(uy) <€ yo ug(yo) +w? yo Mi(uf) +my yé+ o+ 0 Yo %

and the proof is complete.

) fy) dy'dy

|Kslloe

<2¢R,



Proposition 2.2. There is a function f € CNW?>'(Y) such that
—e f" = ¢:(f) Ls(f) in Y, (2.9)
F(0) =yo f'(yo) — fyo) =0 . (2.10)
Proof. By Lemma 2.1, the mapping f —— uy maps C into itself. In addition, it is clearly a
continuous and compact mapping from C into itself for the norm-topology of L!(Y). Indeed, we
recall that, for f € L'(Y), uy is given by

ot = (3= [T P ar) 5 = (- [ o ar) 5

2ew w

for Y € [OJyO]; where @ 1= w 5—1/2 and

A= / " e B dy + (1—9) / " (W) dy (2.11)

with
9 = Yo w-—1
T yow—1+(yo w+1) e
In particular, there is a constant I' depending on yo and € such that

lugllwiee vy <T [|F(H)llLreyy -

Since F is a locally Lipschitz continuous map from L'(Y’) into L'(Y) (see [14, Lemma 2.1]), the
claimed continuity and compactness of f — uy follow.

Now, since C is a non-empty, closed and convex subset of L!(Y'), we are in a position to apply the
Schauder fixed point theorem and conclude that there is f € C such that uy = f. Proposition 2.2
readily follows. O

(2.12)

3. A REGULARISED PROBLEM: UNIFORM ESTIMATES

For 6 € (0,1), € € (0,6) and ¢ > 0, we denote by f.s the solution to (2.9), (2.10) given by
Proposition 2.2. In particular, we have

/Oyo y feo(y) dy=o. (3.1)

The aim of this section is to prove that (f.,s) is weakly sequentially compact first with respect to
€ and subsequently with respect to d. In the following, we denote by C various positive constants
which do neither depend on € nor on 4. Dependence on §, for instance, will be indicated explicitly
by writing C'(4).

We first proceed as in Lemma 2.1 to bound f. 5(yo).
Lemma 3.1. For § € (0,1) and ¢ € (0,6), we have

fi5(0) 20 and e fes(yo) <C .

g

Proof. Clearly, f! ;(0) > 0 since f.5(0) =0 and f.5(y) > 0 for y € Y. We next multiply (2.9) by
y® and integrate over Y. As in the proof of Lemma 2.1, we use (2.10) and (3.1) to obtain

e (2 g fo5(y0) =6 0) <3 [|Kslloo 9o 0° <3 (IK]loo +1) 3o 0 -
O
We next estimate the L'-norm of f. s using a different argument than in the previous section.
Lemma 3.2. Ford € (0,1) and € € (0,6), we have

8% Mo(fe5) + Mo (fe5) < C . (3.2)
8



Proof. We integrate (2.9) over Y. Since

vo Je.s(y
e [T i@ ay = — e (o) - 1250) 2 e T2 5 o
0
by (2.10) and Lemma 3.1, we deduce from (1.11), (1.16)-(1.18) and (2.1)-(2.3) that
C € /yo "
- S g, Y dy
Sos(fs,é) Pe fsé 0 6( )

IN

/ yO/ (1 - _) (v,y") dy' f-5(y") dy

Yo Yyo—y
o / / 10,20 (W +¥') Ks(y,y') fe,s(') fes(y) dy'dy
0 0
Yo Yo~y , , , ,
+ c / / 10,001 + ') Ks(y,y') fes(y') fes(y) dy'dy
0 0

Yo Yo
(ms —2) /0 / Ks(,y'") fes(y') fes(y) dy'dy
Y

0~y

+

NI =

IN

Ko Yo Yo , , ,
M, (fes) — 2 ) ) Ks(y,y") fes(y') fes(y) dy'dy
Yo Yo , , , ,
+ C/ / 120,90 W +4") Ks(y,y') fes(y') fes(y) dy'dy -
0 0
Owing to (1.6) and the definition of K, we have
! ! Y+ yl * no '
1000 +4') Ks(y,y') < S (K*(yy")" +6) , (y,y) €Y xY,

and thus, thanks to (3.1),

C
Pe (fs,é)

< my Mo(fo5) = 5 (K My(fe)? +8 Mo(f20)°)

Yo Yo
e / / y (K* (0 ') +6) fos') fos(y) dy'dy

Mo (f5) = 5 (Ku My (£25)* +8 Mo(fz.6)°)

+C (K* o Y0 a(f5,6) +096 MO(fs,é))
< C- _0 (K* Ma(fs,6)2 +4 MO(fs,é)z)

I/\

by the Young inequality. Since € < §, a further application of the Young inequality entails that

My (fos)’ +6 Mo(fos)? < C (146 Mo(fo)) < C + g Mo(fos)? |

whence (3.2). O

We next turn to the cornerstone of the proof, that is, the weak compactness of (f. ;) with
respect to €. More precisely, the following result is true.

Lemma 3.3. Foré € (0,1) and € € (0,6), we have

/0 " (fes)” dy < €. (3.3)

9



Proof. Owing to (2.10) and the Hélder inequality, we first notice that

Yo
eatuo) " = [ 3 Ve ay
o dy

Yo
L2 " (sl)” (1) " 125000

# Mo(f-6)""? (/oy0 (Fes @) 1fLs )P dy)

1/2

IA

and therefore
Yo

(Fes ()7 < C(6) / (Fos@)” 2 115 W) dy (3.4)

0

by Lemma 3.2. We now multiply (2.9) by p (fg,(;(y))p*1 and integrate over Y. From (2.10), (3.4)
and the Young inequality we infer that

—€p /Oyo (fs,é(y))p_l 5",5(:1/) dy = —¢€p (f[:_,(;(yo))p_1 sl,a(yo)

+epl-1) | (s @) 1fL5W) dy
> — y—p (fes(W0))” + & C(6) (fe5(y0))"""
> — C(8)

Consequently,

_0@) < —ep / P s )™ 5w dy < 9efeg) (W4 T+ Tt T T5 —To) 5 (35)

where we put

Yo
I]_ = B /
2 0

Yo Yo Yy

I = g /0 /0 By, y) Ks(y",y' —y") Qy",y' —y")
X fes(' —y") feo(y") (fes(y)” " dy'dy'dy

Yo Yo p—1 ,

I = p/o / ' y) fes@') (fes(y))” ~ dy'dy,
Yy

Yo Y

I = g /0 /0 Ks@',y—v) PO y—y") fos(y—o) fos(y) (fos(w))? ™" dy'dy ,

Yo Yo—Yy
Iy == p / / Ks(y,y") {Pw,y) +Qw,y")} fos(¥) (fo5(v))” dy'dy,
Iy .= p /Oyo /yo Ks(y,y") fos(¥) (fos(®))" dy'dy .

Observe then that (1.15) and the Young inequality imply that, for £ € (0, 1), there is a constant
C¢ > 0 such that

Yo

Yo
Bs(',y) p fes()P" dy < Ce ps+£ /0 Y (fes)’ dy = Ce ps+ & Myp(fer5) -

10
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Therefore, (1.6) and Lemma 3.2 entail that

1 2y0 Yo Yo 1
L =3 / / Bs(w',y) p (fes ()" dy Ks(y",y' —y") fes(y' —y") fes(y") dy"dy’
Yo y'—yo /O

IN

Yo Yo
(Ce pis + € My p(fo5)) /0 / CEs(y"y) Fes W) feoy") dy"dy’
Yo—yY

IN

(Ce ps + & My p(fe5)) (K* My (f5)* + yzo 00 MO(fa,é)) )

Il S C (Cg +£M<7,p(fs,5)) - (36)
We estimate I, analogously and thus obtain from (1.2), (1.6), (1.14) and Lemma 3.2 that, for
£€(0,1),
1 vo v v/ ! p—1 "o "
L = ) B, y) p (fes()” dy QW",y' —y")
x Ks(y",y' —y") fes(y' —y") fes(y") dy"dy’
Yo [¥o—y
(Ce pc + & Mop(fe5)) / / Ks(y,y') fo5(y) fes(y') dy'dy
o Jo
(CE e +‘£ Ma,p(fs,é)) (K* Ma(fs,5)2 +0 MO(fs,é)Q)

IA

IA

L < C (Cc +& Myp(fes)) - (3.7
In a similar way, the Young inequality and (1.13) yield

vo ! v / p—1 /

Iy = fes(¥) / W' y) p (Fes(y))”  dydy
0 0
vo ! / v — ! p—1 /

< / Y7 fe5(y') / py 7 (W, y) (fes(y)”  dydy

0 0

Yo y
o o(l— o —1
S/ y' fs,a(y’)/ pyt Py ) (v fl5(y))" dydy
0 0
Yo
< / Y7 fes(y') (Ce iy +€ Mop(fes)) dy/'
0

whence, by Lemma 3.2,

I3 < c (C§ +£Ma',p(f5,6)) Mo(fa,zS) < C (C§+£Mo,p(f€,6)) . (38)

We now estimate Iy — Is — Is. For that purpose, observe first that, by the Young inequality,

Yo Yy p—1
I = / / Ks',y—y) P,y —v) fesly—9") fs(y') p (fes(v))"  dy'dy
0 0

IN
N = N =

/0?/0 Ayo—y K(;(y”y) P(y/’y) fs,é(y) (fs,é(yl))p dydy'

30-0 [ [ Ksly =) =30 Los) (o))" 'y

11
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Therefore, we derive that

ILi—I;—Is < % /Oyo /Oyo_y Ks(y,y") P(y,y") f-5(¥") (Fo5(y))” dy'dy
1 vo Y ! ! ! ! ! p !
t3 (p-1) /0 /0 Ks(y—y',y") Ply—y'sy") feo(y') (Fes(y))” dy'dy
Yo Yo—y »
—p /0 /0 Ks(y,y") (P+Q)(w,y") fes(y) (fo5(y))" dy'dy

-p /0 e Ks(y,y") fos(¥) (fos(®))" dy'dy

Yo—y

1 Yo Yyo—yY p

<-3 p/ / Ks(y,y') (P+2Q)(w,y") fes(y') (fes(y))” dy'dy
0 0
1 Yo Yo p ,
-3 (p+ 1)/ Ks(,y") fes(y') (fes(y))” dy'dy
0 Yo—Yy

1

<

Yo Yo p
—5ph /0 ; Ks(y,y') fos(y') (fes(y))” dy'dy ,

where we have used the monotonicity conditions (1.7) and (1.9) to obtain the second inequality
and (1.8) for the last inequality (recall that P, < 1). Since p = M;(f.s5) < yo Mo(f.,5) and
0= M (f-5) <yo~° M,(f-5), we deduce from (1.6) that

Li—-I;-1Is < - % p P, (K* Mo(fs,é) Ma',p(fs,d) +4 MO(fs,é) MO,p(fs,é)) ,

1

-[4 - I5 - -[6 S - 5 bo P* (K* yg_l Ma,p(fs,é) + 0 y()_1 MO,p(fs,é)) . (39)

Gathering (3.5)-(3.9) we end up with
C(9) 1
—————— < C (Ce+& My p(f — — pP,od M c5) -
SDE(fE,(s) — ( 13 E ,p(f 76)) 2y0 pLo 0,p(f aé)

Choosing then £ € (0,1) sufficiently small and noticing that (cpg(fg,(;))_1 < (146 Mo(fes)) <C
due to ¢ € (0,6) and Lemma 3.2, the assertion follows since My ,(f-5) <y§ Mo p(fz,5)- O

The fact that the monotonicity condition (1.7) on the coagulation kernel K yields LP-estimates
has already been used in [9] for the classical coagulation equation (seee also [11] and the references
therein). In addition, the weak compactness in L!(Y') of the trajectories of (1.1) established in [15]
relies on a similar observation. We adapt here this strategy to estimate Iy — Is — Is under more
general assumptions than the one used in [15].

Now the proof of Theorem 1.1 is a consequence of the previous considerations.

Proof of Theorem 1.1. Keeping § € (0,1) fixed, the set {f.5; € € (0,9)} is bounded in L?(Y)
according to Lemma 3.3. Therefore, there are a sequence (f., 5) and f5 € LP(Y') such that

feno—fs in LP(Y) as e, —0. (3.10)
Since f., s is non-negative and satisfies M;(f., ;) = 0 by (3.1) for each n > 1, it readily follows

from (3.10) that
f6>0 ae. in Y and M;(fs)=o0. (3.11)
We then claim that Ls(fs) = 0. Indeed, on the one hand, it is well-known that Ls is weakly

continuous in L}(Y’) (see either the pioneering work [13] or [15, Appendix A] for a complete proof),
12



and the convergence (3.10) ensures that Ls(f-, s) = Ls(fs) in L' (Y). On the other hand, by (3.2),
(—en f, 5) converges to zero in D'(Y’). Consequently,

/0 " Le(fs)(w) b)) dy =0 for each ¢ € CR(Y) (3.12)
whence
Ls(fs) =0 ae. inY. (3.13)

We may now test (3.13) with p (f(;)p_1 and obtain

Yo _
0=p / (£s())" ! Li(fs)(y)dy < h+L+L+1Ii—1Is — Is (3.14)
0
where the I},’s are defined as in the proof of Lemma 3.3 but with f. 5 replaced by fs. Since (3.10)
and (3.2) imply
52 Mo(fs) <C and M,(fs) <C, (3.15)

we can proceed as in the proof of (3.6), (3.7), (3.8) and (3.9) in Lemma 3.3 to deduce that, for
£e(0,1),

Lh+L+1I; < C (Ce+& Myp(fs)) (3.16)
and
1
ILi—I;—Is < — 5 peP Kyl " Mop(fes) (3.17)

Combining (3.14), (3.16) and (3.17) and choosing £ € (0,1) sufficiently small, we finally obtain
that

Yo
/ v (fs()" dy <C.
0
Therefore, we may extract a subsequence (f5,) and find f € LP(Y,y” dy) such that
fo.—~f in LP(Y,y°dy) as d,—0. (3.18)

Clearly,
[0 and  Mi(f)=o (3.19)
owing to (3.11) and ¢ < 1. In particular, f #Z 0 since g > 0.

It therefore remains to prove that L(f) = 0 a.e. in Y. For that purpose, we observe that (3.13)
also reads

L(fs) = L(fs) — Ls(fs) ae.in Y . (3.20)
On the one hand, we have L(f5) = L(gs), where g5(y) := y° fs5(y), y € Y, and L is defined as

L with 5(y,y") := y~° v(y,y') and K(y,y') := (yy')~° K(y,y') instead of v and K. Owing to
(1.6) and (1.16), Ls is weakly continuous in L' (Y) (see, e.g., [13, 15]). We then deduce from this

property and the convergence (3.18) that

L(fs,) = L(gs,) = L(g) = L(f) in L'(Y), (3.21)

with g(y) :=y” f(y), y €Y.
On the other hand, let ¢ be an arbitrary function in C§°(Y’) and choose a > 0 such that the

support of ¢ is contained in [a,yo — a]. Then, ¥(y) < (||¥|le y)/a. This fact, together with
13



(1.2), (1.10) and (1.12) allow us to deduce that the functions ¢ and s defined in (2.2) and (2.3),
respectively, satisfy

/ y+y’
)] < ot + )]+ o) + I R [Ty gy gy
< A 4y,
Yo
sy, )| < ”ﬂl“’ / y" Bs(y +y'sy") dy" + [9 ()] + [y < 2 ”f”m (y+y') -
0

We then infer from (2.2), (2.3), (3.11) and (3.15) that

o) @) - L an) < 5 [T ) 50 5o) av'ay

0

+2 " / " [s(y, ¥ f5(y) fs(y') dy'dy
Y

2 0 0—Y

Yo Yo
P Ty g5t g0 av'ay

5 0 [[¥lloo 62
a

IN

IN

(51/2 Mo(fé))

IN

C [l 5172
: .

Letting § — 0 then implies that
L(fs) = Ls(fs) = 0 in D'(Y) (3.22)

as 6 — 0. As a consequence of (3.21) and (3.22), we may pass to the limit as §, — 0 in (3.20)
and conclude that L(f) = 0 in D'(Y). Since L(f) actually belongs to L!'(Y), we conclude that
L(f) =0 a.e. in Y, which completes the proof of Theorem 1.1. O

4. NON-EXISTENCE OF NON-ZERO SOLUTIONS

In this concluding section we show that the problem (1.4), (1.5) is not always well-posed if either
(1.13)-(1.15) or (1.11) are violated. To this end, we first assume that there is no spontaneous
breakage, i.e. v =0, and that K and P are strictly positive a.e. on their domains. Furthermore,
we suppose that shattering and scattering are mass preserving and binary processes, that is, that
(1.10) and (1.12) are satisfied and additionally that

Be(y,y') = Bely,y —v') , 0<y' <y<wo, (4.1)
Bs(y,y") = Bs(y,y —y") >0, 0<y—yo<y <o, (4.2)

and
Bs(y,¥') =0, 0<y <y—yo<yo- (4.3)

The latter assumption is due to consistency of the model since each of the daughter particles g’
and y — y' in (4.2) has to belong to Y. Note that (1.10), (1.12) and (4.1)-(4.3) imply

y+y'
Qy,Y) / Bely+y',y") dy" =2 Q(y,y") foraa. (y,y') €E,
0
and
Yo
/ Bs(y,y') dy' =2 for a.a. y € (yo,240) »
Y—Yo
in particular, (1.15) is violated due to the Holder inequality.
14



Proposition 4.1. If v =0, K and P are strictly positive a.e. on their domains and if B and (s
satisfy (4.1)-(4.3), the only solution f € L} (Y) to (1.4) is f = 0.

Proof. Let u € L} (Y) be a solution to (1.4). Then we deduce from (2.1)-(2.3) with ¢ = 1 that
Yo Yo [Yo—y o
0=—/ L(u) / / K(y,y') Ply,y') u(y) u(y') dy'dy
1 [Y0/2 [yo/2 , , .
> 5 [ / K(5,) P(yy) uy) u(y)) dy'dy > 0

whence u = 0 on (0,y0/2) and Lc(u)(y) = 0 for a.e. y € Y. Therefore

Yoty
=L =3 [ [ KGNy -y ) u) ul’ o) dydy
Y

0 ¥ —yo (4.4)
vo ! ! !
- u(y) / K(y,y') u(y’) dy
Yo—y
for a.e. y € Y. We claim that this implies that w = 0 on (£ V (yo — &), (yo + £)/2) for a.e.
€ € (yo/3,y0) such that u(§) = 0 (recall that £V (yo — &) := max {£,yo — §}) Indeed, consider
€ € (yo/3,y0) such that u(¢) = 0. Since
(EV (o — 6, (wo+6/2)" C{W"¥) 5 €<y" <wo, 9o <y +y" <yo+£},

we infer from (4.4) that

yo+£€ Yo
0= / / K(y”7yl - y”) ,Bs(y',f) u(y”) u(y’ _ yll) dyudy,

Yo

Y —Y%o
Yo pryo+(y"' AE)
= / / K",y —y") Bs(y', &) w(y") uly' —y") dy'dy”
ve Zl0+§ y ! ! 1 n ! ! "
=/ / y",y") Bs(y' + 9", &) uy") u(y') dy'dy
Yo

(yo+§)/2 (yo+€)/2
> / / K", y") Bs(y' +9y",€) uly") u(y') dy'dy”
EV(yo—§) JEV(yo—¢E)

>0,

\Y

whence u =0 on ((£Vyo — &), (Yo +&)/2). Defining & := (1 —27%"1)y,, we inductively infer that
u=0on (0,&) for k € N by a density argument, whence u =0 on Y. O

On the other hand, integrating (1.4) over Y and recalling that scattering produces at least two

daughter particles, i.e.
Yo

Bs(yayl) dyl Z 2 , Y€ (?}072310) ’

we easily see that zero is the only steady state provided that, in addition,

y+y
Qy,y") / Bly+y',y")dy" > 2Q,y)+Ply,y), y+y ey,
0

Yy yl
/ (1—§> Yy,y')dy' >0, yeY.
0

Obviously, the former assumption contradicts (1.11).
15
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