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Based on earlier results on existence, we study the asymptotic behaviour of solutions
to the coalescence-breakage equations including the volume scattering phenomenon
and high energy collisions. The solutions are shown to converge towards one
particular equilibrium provided the kernels satisfy a kind of reversibility. We also
derive stability of these equilibria in a suitable topology.

1. Introduction

In the present article we consider the evolution of a liquid-liquid dispersion, which
is a system formed by two immiscible liquids, and where one of these liquids con-
sists of a very large number of droplets that are finely distributed in the other
one. These droplets undergo then the influences of binary coalescence and binary
breakage meaning that two droplets can merge to build a larger droplet or that a
droplet can split into two smaller ones.
Different from most other models considered in literature, we take into account that
droplets cannot become arbitrarily large and that experimental observations sug-
gest the existence of a maximal droplet mass (or volume) beyond which no droplet
can survive (see [22]). A particular model paying attention to this feature was in-
troduced for the first time by Fasano and Rosso [13] (see also [14], [21], or [4]) and
was then developed further by the author [27]. Such a maximal droplet size requires
a new interaction mechanism, called volume scattering, to prevent the occurrence
of droplets that are ”too large”. The underlying idea is that if two droplets collide
having a cumulative mass exceeding the maximal droplet mass, the virtual droplet
is highly unstable and immediately decays into two droplets both with mass within
the admissible range.

Another new feature taken into consideration in our model is the possibility of
high energy collisions leading to a shattering of the involved droplets. Such a break-
age mode has been contemplated in physical literature (cf. [7], [8], or [29]) but — at
least up to the author’s knowledge — only its discrete version has been investigated
mathematically so far (see [20]).

We describe the evolution of the dispersion by means of the droplet size dis-
tribution function u = u(t, y) at time t (per unit mass), y being the mass (or
volume) of a droplet. By y0 ∈ (0,∞) we denote the maximal droplet mass, which
we assume to be a priori known, so that (0, y0] represents the admissible range of
droplet masses. Neglecting dependence on spatial coordinates (for a treatment of
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the spatially inhomogeneous case we refer to [28]), the evolution of the system of
droplets that undergo both coalescence and breakage can be described by the set
of integro-differential equations

u̇(y) = ϕ(u)L[u](y) , t > 0 , y ∈ (0, y0] ,

u(0, y) = u0(y) , y ∈ (0, y0] ,
(∗)

where u0 is a given initial distribution. The reaction terms are defined as

L[u] := Lb[u] + Lc[u] + Ls[u]

whereby for y ∈ (0, y0]

Lb[u](y) :=

∫ y0

y

γ(y′, y)u(y′) dy′ −
1

2
u(y)

∫ y

0

γ(y, y′) dy′ ,

Lc[u](y) :=
1

2

∫ y

0

K(y′, y − y′)P (y′, y − y′)u(y′)u(y − y′) dy′

+
1

2

∫ y0

y

∫ y′

0

K(y′′, y′ − y′′)Q(y′′, y′ − y′′)

βc(y
′, y)u(y′′)u(y′ − y′′) dy′′dy′

− u(y)

∫ y0−y

0

K(y, y′)
{

P (y, y′) + Q(y, y′)
}

u(y′) dy′ ,

Ls[u](y) :=
1

2

∫ y0+y

y0

∫ y0

y′−y0

K(y′′, y′ − y′′)βs(y
′, y)u(y′′)u(y′ − y′′) dy′′dy′

− u(y)

∫ y0

y0−y

K(y, y′)u(y′) dy′ .

The linear operator Lb[u] gives the gain and loss of droplets of mass y due to binary
breakage, where the kernel γ(y, y′) represents the rate at which a droplet of mass
y decays into a droplet of mass y′ ∈ (0, y). Binary breakage in particular means

γ(y, y′) = γ(y, y − y′) , 0 < y′ < y ≤ y0 . (1.1)

When two droplets y and y′ with cumulative mass y + y′ ≤ y0 collide, three differ-
ent events may arise being described by the collision operator Lc[u]. They either
coalesce with probability P (y, y′), or a shattering of these droplets occurs with
probability Q(y, y′), or just nothing happens meaning that the droplets remain
unchanged. Obviously, it then holds

0 ≤ P (y, y′) + Q(y, y′) ≤ 1 , 0 < y + y′ ≤ y0 . (1.2)

The symmetric function K(y, y′) denotes the rate of binary collision. Further,
βc(y + y′, y′′) is the distribution function of products from a particle y + y′ ∈ (0, y0]
shattering after collision, and βc satisfies

βc(y + y′, y′′) = βc(y + y′, y + y′ − y′′) , 0 < y′′ < y + y′ ≤ y0 . (1.3)
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The factors 1/2 come in to compensate for double counting.
The scattering operator Ls[u] represents the interaction of two colliding droplets

whose cumulative mass exceeds y0 and immediately split into two droplets both
with mass in (0, y0]. The distribution function βs(y + y′, y′′) for y + y′ ∈ (y0, 2y0]
has an analogue meaning as βc(y + y′, y′′) for y + y′ ∈ (0, y0] above. Therefore

βs(y + y′, y′′) = βs(y + y′, y + y′ − y′′) , 0 < y + y′ − y0 ≤ y′′ ≤ y0 . (1.4)

We assume that βc and βs merely depend on the cumulative mass y + y′ of the col-
liding droplets although there would barely be a difference in the further analysis
to allow a dependence on each colliding droplet.

Finally, the efficiency factor ϕ(u) linked to some average properties of the dis-
persion enhances or depresses the dynamics while the mechanical structure of the
interactions is described by the kernels γ, βc, βs,K, P , and Q. For instance, ϕ(u)
may be of the form

ϕ(u) = Φ
(

∫ y0

0

u(y) dy ,

∫ y0

0

y2/3u(y) dy
)

, (1.5)

where Φ : R
2 → R

+ is a given function. This means that ϕ(u) is related to the total
number of droplets and the total surface area. Clearly, no mathematically substan-
tial differences arise if one considers for each process an individual efficiency factor.
But to keep the notation simple, we omit this.

The model considered in [4], [13], [14], [21] can be recovered from (∗) by putting
P ≡ 1. In particular, the shattering terms then drop since Q ≡ 0 according to
(1.2). For these reduced equations global existence and uniqueness of non-negative
and mass preserving solutions is shown in [13], which are Lipschitz continuous with
respect to droplet size. These results are extended in [4] to include breakage ker-
nels with singularities. Numerical simulations are performed in [21] exhibiting some
interesting features concerning the qualitative behaviour of the solutions for large
times.

Finally, a slightly modified version of model (∗) — including also multiple break-
age — is considered by the author [27]. In the particular case of binary breakage,
solutions belonging to the space L1

(

(0, y0]
)

are shown to exist globally in time and
to be unique.

It is the purpose of the present paper to investigate the long-time behaviour of
the particular solutions of [27] assuming that the processes under consideration are
somehow reversible. More precisely, we assume that the kernels satisfy an extended
version of the so-called detailed balance condition (see hypothesis (H6) below) guar-
anteeing the existence of equilibria and also providing a Lyapunov function. Such a
reversibility condition on the kernels was used in various papers in order to study
the qualitative behaviour of solutions for large times. For a treatment of the as-
ymptotic behaviour of solutions to the discrete analogue of (∗), we refer to [5], [6],
[10] concerning the spatially homogeneous case and to [9], [18] for the case includ-
ing diffusion (see also [2], [19] for the Becker-Döring equations). Asymptotics for
the continuous model without diffusion is studied in [1], [17], [23], [24] whereas the
long-time behaviour for continuous coagulation-fragmentation models taking into
account diffusion is investigated in [16]. Note that all of the just cited papers con-
sider neither the possibility of shattering nor the existence of a maximal droplet
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mass so that there is also no scattering. In this article we include both of these
processes. Inspired by the work of [16], we prove in section 2 that the solutions
converge (with respect to the L1-topology) towards the unique equilibrium with
the same mass as the initial distribution. Moreover, in section 3 we derive stability
of theses equilibria in a suitable topology.

2. Trend to Equilibrium

In the sequel, we put L1 := L1

(

(0, y0]
)

and denote by |·|1 the norm of L1. The closed
subset of L1 consisting of all u ∈ L1 which are non-negative almost everywhere is
denoted by L+

1 . Furthermore, L1,w stands for the space L1 endowed with its weak
topology.

Throughout this article we assume that the following hypotheses are satisfied:

(H1) ϕ : L1 → (0,∞) is uniformly Lipschitz continuous on bounded sets, weakly
sequentially continuous, and bounded;

(H2) γ is a measurable function from ∆ :=
{

(y, y′) ; 0 < y′ < y ≤ y0

}

into R
+ sat-

isfying (1.1), and there exists mγ > 0 with
∫ y

0

γ(y, y′) dy′ ≤ mγ , a.a. y ∈ (0, y0] ;

(H3) βc is a measurable function from ∆ into R
+ satisfying (1.3) and

∫ y+y′

0

βc(y + y′, y′′) dy′′ = 2 , (2.1)

for a.a. (y, y′) ∈ (0, y0]
2 with y + y′ ∈ (0, y0];

(H4) βs is a measurable function from
{

(y, y′) ; 0 < y − y0 ≤ y′ ≤ y0

}

into R
+

satisfying (1.4) and
∫ y0

y+y′−y0

βs(y + y′, y′′) dy′′ = 2 , (2.2)

for a.a. (y, y′) ∈ (0, y0]
2 with y + y′ ∈ (y0, 2y0];

(H5) P,Q,K ∈ L∞

(

(0, y0]
2, R+

)

are symmetric and P,Q satisfy (1.2) whereas
PK > 0 a.e.;

(H6) there exists H ∈ L+
1 with ess-infH > 0 and

(i) for 0 < y + y′ < y0 it holds

γ(y + y′, y)H(y + y′) = P (y, y′)K(y, y′)H(y)H(y′) ,

(ii) for 0 < y + y′, y + y′′ < y0 it holds

βc(y, y′)Q(y′′, y − y′′)K(y′′, y − y′′)H(y′′)H(y − y′′)

= βc(y, y′′)Q(y′, y − y′)K(y′, y − y′)H(y′)H(y − y′) ,
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(iii) for 0 < y − y0 < y′, y′′ < y0 it holds

βs(y, y′)K(y′′,y − y′′)H(y′′)H(y − y′′)

= βs(y, y′′)K(y′, y − y′)H(y′)H(y − y′) .

We refer to Examples 2.12 for kernels satisfying the hypotheses above. Equalities
(2.1) and (2.2) reflect binary breakage in the shattering and scattering processes,
respectively. Observe that in combination with (1.3) and (1.4) they additionally
imply

∫ y+y′

0

y′′βc(y + y′, y′′) dy′′ = y + y′ , (2.3)

for a.a. (y, y′) ∈ (0, y0]
2 with y + y′ ∈ (0, y0] and

∫ y0

y+y′−y0

y′′βs(y + y′, y′′) dy′′ = y + y′ , (2.4)

for a.a. (y, y′) ∈ (0, y0]
2 with y + y′ ∈ (y0, 2y0]. In other words, shattering and

scattering are mass preserving processes.
Before making use of hypothesis (H6), let us collect some already proven facts

on global existence of solutions to problem (∗), that is, for the ordinary differential
equation

u̇ = ϕ(u)L[u] , t > 0 ,

u(0) = u0 ,
(∗∗)

considered in L1.

Theorem 2.1. Suppose that hypotheses (H1)− (H5) are satisfied. Then, given any
u0 ∈ L+

1 , problem (∗∗) admits a unique solution u(·;u0) ∈ C1(R+, L1) which, in
addition, is non-negative and preserves the total mass, i.e.

∫ y0

0

yu(t;u0)(y) dy =

∫ y0

0

yu0(y) dy , t ≥ 0 .

Moreover, the map (t, u0) 7→ u(t;u0) defines a semiflow on L+
1 .

Proof. This follows by an obvious modification of the proofs in [27] (there, the case
Q ≡ 1 − P is treated). A detailed proof is also given in [28].

In the following, we denote by u := u(·;u0) ∈ C1(R+, L1) the unique solution to
(∗∗), and we write

u(t, y) := u(t;u0)(y) , a.a. y ∈ (0, y0] , t ≥ 0 ,

if the initial value u0 ∈ L+
1 is fixed. Sometimes we suppress any of the variables t

and y in a given formula. Further, c or c(u0) will denote various constants, which
may differ from occurrence to occurrence, but which are always independent of the
free variables.

It is an easy consequence of hypothesis (H6) that the function uα ∈ L+
1 , given by

uα(y) := H(y)eαy , a.a. y ∈ (0, y0] , (2.5)
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is for each α ∈ R an equilibrium of problem (∗∗). Let us then introduce the map
V : L+

1 → R
+ ∪ {∞} according to

V (v) :=

∫ y0

0

{

v(y)
[

log
v(y)

H(y)
− 1

]

+ H(y)
}

dy , v ∈ L+
1 ,

which will turn out to be a Lyapunov function for (∗∗). Note that Fatou’s lemma
entails that V is sequentially lower semi-continuous. Hence V is weakly sequentially
lower semi-continuous due to its convexity (see [12, Prop.2.3]).

Next, the proof of [16, Lem.3.1] can easily be modified to yield the following
lemma, which will guarantee that the orbit of the motion through u0 ∈ L+

1 is
relatively weakly compact in L1 provided V (u0) < ∞.

Lemma 2.2. Let w ∈ L+
1 be such that V (w) < ∞. Then, for each α ≥ e2 and each

measurable subset A of (0, y0], it holds

∫

A

w(y) dy ≤ 2α

∫

A

H(y) dy +
2

log α
V (w) .

Further, it is not difficult to adapt the ideas of [16, Lem.C.1] in order to proof
the next result. We refrain from giving details and refer to [28, Lem.3.9].

Lemma 2.3. Suppose that w ∈ L+
1 satisfies

γ(y + y′, y)w(y + y′) = P (y, y′)K(y, y′)w(y)w(y′) (2.6)

for a.a. (y, y′) ∈ (0, y0]
2 with 0 < y+y′ ≤ y0. Then either w = 0 a.e. or there exists

α ∈ R such that w(y) = H(y)eαy for a.a. y ∈ (0, y0].

The main ingredient for examining large-time behaviour of the solutions consists
of proving that V is a Lyapunov function for (∗∗), that is, that V is decreasing
along orbits. Such a result will make heavily use of hypothesis (H6) as well as of
formulas (2.1) and (2.2). In order to carry through rigorously the technical details,
we need an upper and a lower bound for the solutions. This may be obtained by
approximating the solution to (∗∗) by solutions to a modified problem, where the
initial value and the kernels are truncated in a suitable way paying attention to the
detailed balance condition (H6). But then these truncated kernels do no longer obey
equalities of type (2.1) and (2.2). Hence, we also have to alter the reaction terms
slightly in order to guarantee that V is still decreasing along orbits of solutions to
the modified problem. For that purpose, let us introduce some further notations.
Define the set

E :=
{

(y, y′) ∈ (0, y0]
2 ; y + y′ < y0

}

,

as well as for n ≥ 1 the sets

An :=
{

(y, y′) ∈ E ; γ(y + y′, y) ≤ n
}

,

Bn :=
{

(y, y′) ∈ E ; βc(y + y′, y) ≤ n
}

,

Cn :=
{

(y, y′) ∈ (0, y0]
2 \ E ; βs(y + y′, y) ≤ n

}

,
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and observe that (y, y′) belongs to any one of the sets An, Bn, or Cn if and only if
(y′, y) does. Further, truncate the kernels according to

γn(y + y′, y) :=

{

γ(y + y′, y) , (y, y′) ∈ An ∩ Bn ,

0 , else ,

βc,n(y + y′, y) :=

{

βc(y + y′, y) , (y, y′) ∈ An ∩ Bn ,

0 , else ,

βs,n(y + y′, y) :=

{

βs(y + y′, y) , (y, y′) ∈ Cn ,

0 , else ,

Kn(y, y′) :=

{

K(y, y′) , (y, y′) ∈ (An ∩ Bn) ∪ Cn ,

0 , else .

Then Kn is symmetric and γn, βc,n, and βs,n satisfy hypotheses (H2), (H3), and
(H4), respectively. Furthermore,

γn ր γ , βc,n ր βc , βs,n ր βs , Kn ր K , (2.7)

pointwise on the domains of γ, βc, βs, and K. Finally, the truncated kernels satisfy
the detailed balance condition (H6) with the same function H and the same prob-
abilities P and Q.

In addition, define for w ∈ L1 and a.a. y ∈ (0, y0]

Lb,n[w](y) :=

∫ y0

y

γn(y′, y)w(y′) dy′ −
1

2
w(y)

∫ y

0

γn(y, y′) dy′ ,

Lc,n[w](y) :=
1

2

∫ y

0

Kn(y′, y − y′)P (y′, y − y′)w(y′)w(y − y′) dy′

+
1

2

∫ y0

y

∫ y′

0

Kn(y′′, y′ − y′′)Q(y′′, y′ − y′′)

βc,n(y′, y)w(y′′)w(y′ − y′′) dy′′dy′

− w(y)

∫ y0−y

0

Kn(y, y′)P (y, y′)w(y′) dy′

−
1

2
w(y)

∫ y0−y

0

∫ y+y′

0

βc,n(y + y′, y′′) dy′′ Kn(y, y′)Q(y, y′)w(y′) dy′ ,

Ls,n[w](y) :=
1

2

∫ y0+y

y0

∫ y0

y′−y0

βs,n(y′, y)Kn(y′′, y′ − y′′)w(y′′)w(y′ − y′′) dy′′dy′

−
1

2
w(y)

∫ y0

y0−y

∫ y0

y+y′−y0

βs,n(y + y′, y′′) dy′′ Kn(y, y′)w(y′) dy′ ,

and further

Ln[w] := Lb,n[w] + Lc,n[w] + Ls,n[w] , w ∈ L1 .

In the sequel, we denote by | · |∞ the norm of L∞ := L∞

(

(0, y0]
)

.
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Lemma 2.4. Given n ≥ 1 and any non-negative w0 ∈ L∞, there exists a unique
solution w := w(·;w0) ∈ C1(R+, L∞) for the problem

ẇ = ϕ(w)Ln[w] , t > 0 ,

w(0) = w0 .

Moreover, this solution is non-negative and, in addition, if w0 ≥ r0 a.e. for some
r0 ∈ (0,∞) then, for any T > 0, there exists rT > 0 such that

w(t) ≥ rT a.e. , 0 ≤ t ≤ T . (2.8)

Proof. According to hypotheses (H1) − (H5) it holds

∣

∣ϕ(w)Ln[w]
∣

∣

∞
≤ c

(

1 + |w|1
)

|w|∞ , w ∈ L∞ . (2.9)

From this, existence of a unique solution w ∈ C1
(

J(w0), L∞

)

follows, where J(w0)
denotes the maximal interval of existence. That this solution is non-negative may
be obtained along the lines of the proof of [27, Thm.2.4]. Observe then that

∫ y0

0

Lb,n[v](y) dy ≤ c|v|1 ,

∫ y0

0

Lc,n[v](y) dy ≤ 0 ,

∫ y0

0

Ls,n[v](y) dy = 0 ,

for v ∈ L+
1 . Since w(t) ∈ L+

1 for t ∈ J(w0), Gronwall’s inequality applies to provide
c := c(w0) with

|w(t)|1 ≤ cect , t ∈ J(w0) ,

so that (2.9) entails J(w0) = R
+. Finally, it remains to prove (2.8). Fix T > 0

arbitrarily and put

ω := ‖ϕ‖∞
(

mγ + ‖K‖∞ max
0≤t≤T

|w(t)|1
)

.

Since w(s) ≥ 0 a.e. we deduce for 0 ≤ t ≤ T

w(t) = e−ωtw0 +

∫ t

0

e−ω(t−s)
{

ϕ
(

w(s)
)

Ln[w(s)] + ωw(s)
}

ds

≥ e−ωT r0 =: rT a.e. .

We also need the following lemma whose prove can be found in [16, Lem.A.2].

Lemma 2.5. Let Ω ⊂ R
m, m ≥ 1, be a measurable and bounded set. Assume that

hn, h ∈ L∞(Ω) are such that ‖hn‖∞ ≤ c for n ≥ 1 and hn → h a.e.. Then, provided
vn → v in L1,w(Ω), it holds hnvn → hv in L1,w(Ω).

The next lemma will ensure in particular that the solutions to the modified
problem, being provided by Lemma 2.4, indeed approximate the original solution
u(·;u0).
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Lemma 2.6. Assume that wn → w in L1,w.
(i) Defining for (y, y′) ∈ E

vn(y, y′) := γn(y + y′, y)wn(y + y′) ,

and
v(y, y′) := γ(y + y′, y)w(y + y′) ,

it holds vn → v in L1,w(E) .
(ii) Defining for (y, y′) ∈ E

zn(y, y′) := P (y, y′)Kn(y, y′)wn(y)wn(y′)

and
z(y, y′) := P (y, y′)K(y, y′)w(y)w(y′) ,

it holds zn → z in L1,w(E) .
(iii) It holds Ln[wn] → L[w] in L1,w.

Proof. Given f ∈ L∞(E) use Fubini’s theorem to deduce

∣

∣

∣

∫

E

f(y,y′)
[

vn(y, y′) − v(y, y′)
]

d(y, y′)
∣

∣

∣

≤ ‖f‖∞

∫ y0

0

an(y)|w(y)| dy +
∣

∣

∣

∫ y0

0

hn(y)
[

w(y) − wn(y)
]

dy
∣

∣

∣

(2.10)

where

an(y) :=

∫ y

0

|γn(y, y′) − γ(y, y′)| dy′ , hn(y) :=

∫ y

0

f(y′, y − y′)γn(y, y′) dy′ .

Due to hypothesis (H2) and (2.7), an application of Lebesgue’s theorem yields that
the first term on the right hand side of (2.10) converges to 0 as n → ∞. Next
observe that for a.a. y ∈ (0, y0] we have, in virtue of Fubini’s theorem,

f(·, y − ·) ∈ L∞

(

(0, y)
)

with ‖f(·, y − ·)‖L∞((0,y)) ≤ ‖f‖∞ .

We obtain |hn|∞ ≤ ‖f‖∞mγ and, using Lebesgue’s theorem,

hn(y) → h(y) :=

∫ y

0

f(y′, y − y′)γ(y, y′) dy′ , a.a. y ∈ (0, y0] ,

where h ∈ L∞. Lemma 2.5 entails now vn → v in L1,w(E). All other statments can
be proven in a similar way (for (iii) recall (2.1) and (2.2)). Therefore, we refrain
from giving more details and refer to [28].

Let us introduce some further notations. Define the map J : R
2 → R

+ ∪{∞} by

J (a, b) :=











(a − b)(log a − log b) , a, b > 0 ,

0 , a = b = 0 ,

∞ , else .
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In order to shorten the formulas we agree upon putting

y′′′ ≡ y + y′ − y′′ , 0 < y′′ < y + y′ .

Moreover, we set for v ∈ L+
1

D(v) :=
1

2

∫

E

J
(

P (y, y′)K(y, y′)v(y)v(y′) , γ(y + y′, y)v(y + y′)
)

d(y, y′) ,

F (v) :=
1

8

∫

W

J
(

βc(y + y′, y)Q(y′′, y′′′)K(y′′, y′′′)v(y′′)v(y′′′) ,

βc(y + y′, y′′)Q(y, y′)K(y, y′)v(y)v(y′)
)

d(y, y′, y′′) ,

G(v) :=
1

8

∫

S

J
(

βs(y + y′, y)K(y′′, y′′′)v(y′′)v(y′′′) ,

βs(y + y′, y′′)K(y, y′)v(y)v(y′)
)

d(y, y′, y′′) ,

where the sets W and S are given by

W :=
{

(y, y′, y′′) ∈ (0, y0]
3 ; y′′ < y + y′ < y0} ,

S :=
{

(y, y′, y′′) ∈ (0, y0]
3 ; y0 − y′′ < y + y′ − y′′ < y0

}

.

Finally, we define Dn(v), Fn(v), and Gn(v) analogously but with (γn, βc,n, βs,n,Kn)
instead of (γ, βc, βs,K).

Now we are in position to prove that V is indeed a Lyapunov function for (∗∗).

Proposition 2.7. Let u0 ∈ L+
1 be such that V (u0) < ∞ and denote by u = u(·;u0)

the unique, non-negative solution to (∗∗) in C1(R+, L1). Then it holds

0 ≤ V
(

u(t)
)

≤ V
(

u(s)
)

< ∞ , t ≥ s ≥ 0 , (2.11)

and
[

t 7→ ϕ
(

u(t)
)

D
(

u(t)
)]

∈ L1(R
+) . (2.12)

Proof. For n ≥ 1 set

u0
n(y) := min

{

n, max
{

u0(y), H(y)/n
}}

, a.a. y ∈ (0, y0] ,

and observe that 0 < min{n, 1
ness-inf H} ≤ u0

n ≤ n a.e. and u0
n → u0 in L1. Further

we have
∫ y0

0

u0
n log

u0
n

H
dy ≤

(

∫

Sn

+

∫

Tn

)

u0 log
u0

H
dy , n ≥ 1 ,

where we put

Sn :=
[H

n
≤ u0 < n

]

and Tn :=
[

H < n ≤ u0
]

.

Taking into account that V (u0) < ∞ and r| log r| ≤ r log r + 2
e , r ≥ 0, imply

u0 log u0

H ∈ L1, Lebesgue’s theorem yields

lim sup
n

V (u0
n) ≤ V (u0) . (2.13)
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Next, Lemma 2.4 entails the existence of a solution un := un(·;u0
n) ∈ C1(R+, L∞)

to the problem
ẇ = ϕ(w)Ln[w] , t > 0 ,

w(0) = u0
n

satisfying for each T > 0

0 < r1
n(T ) ≤ un(t) ≤ r2

n(T ) < ∞ a.e. , 0 ≤ t ≤ T , (2.14)

for some constants rj
n(T ). This enables us to deduce

d

dt
V

(

un(t)
)

= ϕ
(

un(t)
)

∫ y0

0

log
un(t, y)

H(y)
Ln[un(t)](y) dy (2.15)

for n ≥ 1 and 0 ≤ t ≤ T . Note that Fubini’s theorem applies throughout in the
following because of (2.14). Little effort then yields

∫ y0

0

log
un(t, y)

H(y)

{

Lb,n[un(t)](y) + L(P )
c,n [un(t)](y)

}

dy = −Dn

(

un(t)
)

, (2.16)

for n ≥ 1 and 0 ≤ t ≤ T , where L
(P )
c,n consists of those integral terms of Lc,n

involving P but not Q. Further we compute

∫ y0

0

log
un(y)

H(y)
Ls,n[un](y) dy

=
1

2

∫

S

{

log
un(y′′)

H(y′′)
− log

un(y)

H(y)

}

βs,n(y + y′, y′′)Kn(y, y′)un(y)un(y′) d(y, y′, y′′)

=
1

4

∫

S

{

log
un(y′′)un(y′′′)

H(y′′)H(y′′′)
− log

un(y)un(y′)

H(y)H(y′)

}

βs,n(y + y′, y′′)Kn(y, y′)un(y)un(y′) d(y, y′, y′′) ,

where we have taken into account the symmetry of Kn and that βs,n satisfies (1.4).
The transformation S → S, (y, y′, y′′) 7→ (y′′, y′′′, y) entails then that the right hand
side of the above equality coincides with

1

8

∫

S

{

log
un(y′′)un(y′′′)

H(y′′)H(y′′′)
− log

un(y)un(y′)

H(y)H(y′)

}

βs,n(y + y′, y′′)Kn(y, y′)un(y)un(y′) d(y, y′, y′′)

+
1

8

∫

S

{

log
un(y)un(y′)

H(y)H(y′)
− log

un(y′′)un(y′′′)

H(y′′)H(y′′′)

}

βs,n(y + y′, y)Kn(y′′, y′′′)un(y′′)un(y′′′) d(y, y′, y′′) .

Finally, due to hypothesis (H6) we may rewrite this last expression to get

∫ y0

0

log
un(t, y)

H(y)
Ls,n[un(t)](y) dy = −Gn

(

un(t)
)

, (2.17)
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for n ≥ 1 and 0 ≤ t ≤ T . Likewise one derives
∫ y0

0

log
un(t, y)

H(y)
L(Q)

c,n [un(t)](y) dy = −Fn

(

un(t)
)

, (2.18)

where L
(Q)
c,n are those integral terms of Lc,n involving Q but not P . Therefore,

(2.15)-(2.18) in combination with (2.13) yield for n ≥ 1 and 0 ≤ t ≤ T

V
(

un(t)
)

+

∫ t

0

ϕ
(

un(σ)
){

Dn

(

un(σ)
)

+ Fn

(

un(σ)
)

+ Gn

(

un(σ)
)}

dσ

= V (u0
n) ≤ c(u0) < ∞ .

(2.19)

Consequently,
V

(

un(t)
)

≤ c(u0) , n ≥ 1 , t ≥ 0 , (2.20)

since each of the terms Dn

(

un(σ)
)

, Fn

(

un(σ)
)

, and Gn

(

un(σ)
)

is non-negative.
Hence, Lemma 2.2 leads to

|un(t)|1 ≤ c(u0) , n ≥ 1 , t ≥ 0 , (2.21)

and invoking additionally the Dunford-Pettis theorem [11, Thm.4.21.2] we see that
the set

{

un(t) ; n ≥ 1
}

is relatively weakly compact in L1 for each t ≥ 0. Next,
from (2.7) and hypotheses (H1) − (H5) we derive

∣

∣ϕ(v)Ln[v]
∣

∣

1
≤ c

(

1 + |v|1
)

|v|1 , v ∈ L1 , n ≥ 1 , (2.22)

with c being independent of n ≥ 1. This and (2.21) imply

|un(t) − un(s)|1 ≤ c(u0)|t − s| , t, s ≥ 0 , n ≥ 1 . (2.23)

In particular, the set
{

un ; n ≥ 1
}

is equicontinuous with respect to the weak
topology of L1. Now fix T > 0 arbitrarily. Then the Arzelà-Ascoli theorem [26,
Thm.1.3.2] entails that there exist ū ∈ C([0, T ], L1,w) and a subsequence (n′) such
that

un′ → ū in C([0, T ], L1,w) . (2.24)

Clearly, ū belongs to C1−([0, T ], L1) due to (2.23), that is, ū is Lipschitz continuous
with respect to the L1-topology. Further, thanks to Lemma 2.6 we have

Ln′ [un′(σ)] → L[ū(σ)] in L1,w , 0 ≤ σ ≤ T . (2.25)

Since ϕ is weakly sequentially continuous, an application of Lebesgue’s theorem,
(2.21), (2.22), (2.24), and (2.25) yield

∫ t

0

ϕ
(

un′(σ)
)

Ln′ [un′(σ)] dσ −→

∫ t

0

ϕ
(

ū(σ)
)

L[ū(σ)] dσ in L1,w , 0 ≤ t ≤ T ,

so that a renewed use of (2.24) shows

ū(t) = u0 +

∫ t

0

ϕ
(

ū(σ)
)

L[ū(σ)] dσ , 0 ≤ t ≤ T .
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Hence ū = u(·;u0)
∣

∣

[0,T ]
due to uniqueness of solutions to (∗∗). Consequently we

have
un′ → u(·;u0) in C([0, T ], L1,w) . (2.26)

Since V is weakly lower semi-continuous and since T > 0 was arbitrary, we deduce
from (2.19) and (2.13) that (2.11) is indeed true for t ≥ s = 0. The semiflow
property then yields the general case of (2.11).

Hence it remains to prove (2.12). According to (2.26) we may apply Lemma 2.6
to obtain

γn′(y + y′, y)un′(σ, y + y′) → γ(y + y′, y)u(σ, y + y′) in L1,w(E) ,

P (y, y′)Kn′(y, y′)un′(σ, y)un′(σ, y′) → P (y, y′)K(y, y′)u(σ, y)u(σ, y′) in L1,w(E) ,

for 0 ≤ σ ≤ T . Since the function J , appearing in the definition of D(v), is convex
and lower semi-continuous, we obtain from the above convergence, from Fatou’s
lemma, and from (2.19) that

∫ T

0

ϕ
(

u(σ)
)

D
(

u(σ)
)

dσ ≤ lim inf
n′

∫ T

0

ϕ
(

un′(σ)
)

Dn′

(

un′(σ)
)

dσ ≤ c(u0) ,

whereby c(u0) does not depend on T > 0.

Recall that the equilibria uα, α ∈ R, are given by (2.5). Clearly, given any ̺ > 0
there exists α(̺) ∈ R uniquely such that M(uα(̺)) = ̺, where the mass M(v) of

v ∈ L+
1 is defined as

M(v) :=

∫ y0

0

yv(y) dy .

Now we can state the result concerning convergence towards equilibrium.

Theorem 2.8. Given u0 ∈ L+
1 \ {0} with V (u0) < ∞ choose α ∈ R such that

M(uα) = M(u0). Then, given any sequence tn ր ∞ and any T > 0, the solution
u = u(·;u0) to problem (∗∗) satisfies

u(· + tn;u0) → uα in C([0, T ], L1,w) . (2.27)

In addition, if there exists r ∈ L+
1 such that for a.a. y ∈ (0, y0)

γ(·, y) ≤ r(y) a.e. on (y, y0) (2.28)

and if u0 > 0 a.e., then

u(· + tn;u0) → uα in C([0, T ], L1) . (2.29)

Proof. Put

un(t) := u(t + tn;u0) = u
(

t;u(tn;u0)
)

, t ≥ 0 , n ≥ 1 ,

so that, according to Proposition 2.7,

V
(

un(t)
)

≤ V (u0) , t ≥ 0 , n ≥ 1 . (2.30)
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Analogously to the proof of Proposition 2.7 we deduce the existence of a function
ū ∈ C1−([0, T ], L1) and of a subsequence (n′) such that un′ → ū in C([0, T ], L1,w).
Obviously, we have ū(t) ∈ L+

1 for 0 ≤ t ≤ T . Further, as in the proof of Proposition
2.7 we infer

0 ≤

∫ T

0

ϕ
(

ū(t)
)

D
(

ū(t)
)

dt ≤ lim inf
n′

∫ T

0

ϕ
(

un′(t)
)

D
(

un′(t)
)

dt .

Thanks to (2.12) the latter expression equals zero. Therefore, D
(

ū(t)
)

= 0 for a.a.
0 ≤ t ≤ T since ϕ has no zeros. By definition of D, Lemma 2.3 entails that ū(t) is
an equilibrium of the form (2.5) for a.a. t ∈ [0, T ]. But since

M
(

ū(t)
)

= M
(

un′(t)
)

= M(u0) = M(uα) , 0 ≤ t ≤ T ,

according to Theorem 2.1, we deduce that ū is independent of time due to continuity,
and it coincides with uα. Therefore, un′ → uα in C([0, T ], L1,w), which leads to
(2.27) since the limit does not depend on the extracted subsequence.

Let (2.28) be true so that (2.27) implies for T > 0

L1
b [un(t)](y) → L1

b [uα](y) , a.a. y ∈ (0, y0] , 0 ≤ t ≤ T ,

where we put

L1
b [v](y) :=

∫ y0

y

γ(y′, y)v(y′) dy′ , a.a. y ∈ (0, y0] , v ∈ L1 .

Moreover, invoking (2.30) and Lemma 2.2 we get

∣

∣L1
b [un(t)](y)

∣

∣ ≤ |un(t)|1 r(y) ≤ c(u0) r(y) , a.a. y ∈ (0, y0] , 0 ≤ t ≤ T , (2.31)

with c(u0) > 0 depending neither on n ≥ 1 nor on t ∈ [0, T ]. Thus, Lebesgue’s
theorem and (2.27) entail

ϕ(un)L1
b [un] → ϕ(uα)L1

b [uα] in L1

(

(0, T ) × (0, y0]
)

, (2.32)

since ϕ is weakly sequentially continuous and bounded. For v ∈ L1 set

h(v)(y) :=

∫ y0−y

0

P (y, y′)K(y, y′)v(y′) dy′ , a.a. y ∈ (0, y0] .

Analogously as above it then holds

ϕ(un)h(un) → ϕ(uα)h(uα) in L1

(

(0, T ) × (0, y0]
)

. (2.33)

Next, take up the idea of the proof of Lemma 2.4 in order to deduce that u0 > 0 a.e.
implies u(t;u0) > 0 a.e. for each t ≥ 0. Fix λ > 1 and observe that the inequality

|η − ξ| ≤ (λ − 1)ξ +
1

log λ
(η − ξ)(log η − log ξ) , ξ, η > 0 ,
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holds, from which we derive
∣

∣ϕ(un)unh(un) − ϕ(un)L1
b [un]

∣

∣

L1((0,T )×(0,y0])

≤

∫ T

0

ϕ(un)

∫ y0

0

∫ y0−y

0

∣

∣P (y, y′)K(y, y′)un(y)un(y′)

− γ(y + y′, y)un(y + y′)
∣

∣ dy′dydt

≤ (λ − 1)
∣

∣ϕ(un)L1
b [un]

∣

∣

L1((0,T )×(0,y0])
+

2

log λ

∫ T

0

ϕ(un)D(un) dt .

Taking the lim supnր∞ on both sides and letting then λ tend to 1, (2.12), (2.31),
and (2.32) provide

ϕ(un)unh(un) → ϕ(uα)L1
b [uα] = ϕ(uα)uαh(uα) in L1

(

(0, T ) × (0, y0]
)

as n ր ∞, whereby the equality is implied by hypothesis (H6). Therefore, re-
calling (2.33), we may extract a subsequence (n′) such that ϕ(un′)un′h(un′) and
ϕ(un′)h(un′) converge pointwise a.e. on (0, T ) × (0, y0] towards ϕ(uα)uαh(uα) and
ϕ(uα)h(uα), respectively. But this implies that un′ → uα a.e. on (0, T )×(0, y0] since
ϕ(uα)h(uα) > 0 in virtue of hypotheses (H1) and (H5). Analogously to (2.21), the
set

{

un(t) ; n ≥ 1 , 0 ≤ t ≤ T
}

is bounded in L1 so that (2.27) gives un′ → uα in

L1,w

(

(0, T ) × (0, y0]
)

and a.e. on (0, T ) × (0, y0]. Hence

un′ → uα in L1

(

(0, T ) × (0, y0]
)

(2.34)

from which we derive (see [27, Lem.2.1])

L[un′ ] → L[uα] = 0 in L1

(

(0, T ) × (0, y0]
)

. (2.35)

Observing

un′(t) = un′(s) +

∫ t

s

ϕ
(

un′(σ)
)

L[un′(σ)] dσ , 0 ≤ s ≤ t ,

we then see that for each t ∈ (0, T ]

t|un′(t) − uα|1 ≤ |un′ − uα|L1((0,T )×(0,y0]) + ‖ϕ‖∞

∫ t

0

∫ t

s

∣

∣L[un′(σ)]
∣

∣

1
dσds

≤ |un′ − uα|L1((0,T )×(0,y0]) + T‖ϕ‖∞
∣

∣L[un′ ]
∣

∣

L1((0,T )×(0,y0])
.

Recalling (2.34) and (2.35) it therefore holds un′ → uα in C
(

(0, T ], L1

)

. Assertion
(2.29) is now evident.

Remark 2.9. Theorem 2.8 implies that there exist no further equilibria in L+
1 for

which V is finite.

Remark 2.10. Note that it holds V (w) < ∞ for w ∈ L+
p provided p > 1. This is

a consequence of the properties of H, Hölder’s inequality, and the fact that

x| log x| ≤ c(ε)(x1+ε + x1−ε) , x > 0 , ε > 0 .
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Remark 2.11. Observe that the asymptotic distribution provided by Theorem 2.8
depends merely on the total mass of the initial distribution but not on its shape,
which seems to be consistent with numerical simulations and physical theory (see
[14], [15], [21], and [25] for details).

It may be worthwhile to present some examples of kernels satisfying the imposed
assumptions.

Example 2.12. If ϕ is defined as in (1.5), then hypothesis (H1) is satisfied provided
Φ : R

2 → (0,∞) is uniformly Lipschitz continuous on bounded sets and bounded.

Example 2.13. Let P ∈ C
(

(0, y0]
2, (0,∞)

)

be symmetric and let q ∈ C
(

(0, y0], R
+
)

be such that
0 < P (y, y′) + q(y + y′) ≤ 1 , 0 < y + y′ ≤ y0 .

Assume α ≥ 0 and 0 ≥ α − β > −1 and define for arbitrary constants K∗, γ∗ > 0

Q(y, y′) := q(y + y′) , 0 < y + y′ ≤ y0 ,

K(y, y′) := K∗(y + y′)α , 0 < y, y′ ≤ y0 ,

γ(y, y′) := γ∗P (y − y′, y′)yβ
[

y′(y − y′)
]α−β

, 0 < y′ < y ≤ y0 ,

βc(y, y′) := cα,βy−1−2α+2β
[

y′(y − y′)
]α−β

, 0 < y′ < y ≤ y0 ,

βs(y, y′) := fs(y)
[

y′(y − y′)
]α−β

, 0 < y − y0 ≤ y′ ≤ y0 ,

where cα,β :=
(

B(α − β + 2, α − β + 1)
)−1

with B denoting the beta function and
where

fs(y) := y
(

∫ y0

y−y0

y′
[

y′(y − y′)
]α−β

dy′
)−1

, y0 < y < 2y0 .

Then hypotheses (H2) − (H6) are satisfied with

H(y) :=
γ∗

K∗
yα−β , y ∈ (0, y0] .

Further, (2.28) holds provided α = β.

Example 2.14. Analogously as in [16] we may define

K(y, y′) := re−y2−(y′)2 , 0 < y, y′ ≤ y0 ,

γ(y, y′) := se−(y−2y′)2 , 0 < y′ < y ≤ y0 ,

βs(y, y′) := f(y)e−4y(y−y′) , 0 < y − y0 ≤ y′ ≤ y0 ,

for some r, s > 0, where

f(y) := y
(

∫ y0

y−y0

y′′e−4y(y−y′′) dy′′
)−1

, y0 < y < 2y0 .

Then, for P ≡ 1 and Q ≡ 0, hypotheses (H2) − (H6) hold with

H(y) :=
s

r
e−y2

, y ∈ (0, y0] ,

and, in addition, (2.28) is satisfied.
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Example 2.15. The other example from [16] can also be considered. Let α, τ, p,
and λ be arbitrary real numbers and let A0, B0 > 0. Put

K(y, y′) := A0(1 + y)α(1 + y′)α ,

γ(y, y′) := B0K(y′, y − y′)(1 + y)τ
[

(1 + y′)(1 + y − y′)
]−τ

eλ(yp−(y−y′)p−(y′)p) ,

βs(y, y′) := yν(y, y′)
(

∫ y0

y−y0

y′′ν(y, y′′) dy′′
)−1

,

where ν(y, z) := (1 + z)α−τ (1 + y− z)α−τe−λ(zp+(y−z)p). Then, with P ≡ 1, Q ≡ 0,
and

H(y) :=
B0

A0
(1 + y)−τe−λyp−y , y ∈ (0, y0] ,

hypotheses (H2) − (H6) and inequality (2.28) are satisfied.

3. Stability

We now focus on stability of the equilibria. For this purpose let us introduce for
any ̺ > 0 the spaces

X+ :=
{

u ∈ L+
1 ; V (u) < ∞

}

and X+
̺ :=

{

w ∈ X+ ; M(w) = ̺
}

.

If not stated otherwise, X+ and X+
̺ are equipped with the L1-topology turning

them into metric spaces. Observe that both X+ and X+
̺ are positively invariant, and

that the map (t, u0) 7→ u(t;u0) defines a semiflow on X+ and X+
̺ due to Theorem

2.1 and Proposition 2.7. Moreover, provided (2.28) holds, Theorem 2.8 entails that
uα(̺) is a global attractor for the semiflow generated on X+

̺ , where α(̺) is chosen
such that M(uα(̺)) = ̺.

In order to state the next proposition, we define for η ∈ R

Vη(w) := V (w) − |H|1 − ηM(w) , w ∈ X+ .

Proposition 3.1. For ̺ > 0 choose α(̺) ∈ R such that M(uα(̺)) = ̺. Then,
uα(̺) is the unique minimizer of V on X+

̺ and of Vα(̺) on X+. Moreover, for any
minimizing sequence (wj) of V on X+

̺ , it holds wj → uα(̺) in X+
̺ .

Proof. For r > 0 define

fr(w) := w
(

log
w

r
− 1

)

, w ≥ 0 ,

with fr(0) := 0. Then fr has at w = r a global minimum for each r > 0. For brevity
put α := α(̺). Given w ∈ X+ it holds

Vα(w) =

∫ y0

0

fuα(y)

(

w(y)
)

dy ≥

∫ y0

0

fuα(y)

(

uα(y)
)

dy = Vα(uα) ,

where the inequality is strict if w differs from uα on a set of non-zero measure. Hence,
uα is the unique minimizer of Vα on X+. Furthermore, since M

(

X+
̺

)

= {̺}, it also
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minimizes V on X+
̺ .

Let now (wj) be a minimizing sequence of V in X+
̺ , i.e.

lim V (wj) = inf
w∈X+

̺

V (w) = V (uα) . (3.1)

Observing that this implies
∣

∣fuα(·)

(

wj(·)
)

− fuα(·)

(

uα(·)
)∣

∣

1
= Vα(wj) − Vα(uα) −→ 0 ,

we may extract a subsequence (j′) such that fuα(·)

(

wj′(·)
)

→ fuα(·)

(

uα(·)
)

a.e..
This easily implies wj′ → uα a.e.. From (3.1), Lemma 2.2, and the Dunford-Pettis
theorem we deduce that (wj′) is relatively weakly compact in L1. Therefore, there
exists a further subsequence (j′′) and w ∈ L1 such that wj′′ → w in L1,w. Since V
is weakly lower semi-continuous we get

V (w) ≤ lim inf
j′′

V (wj′′) = V (uα) < ∞ ,

whence w ∈ X+
̺ . From the above considerations we conclude w = uα. Altogether,

we obtain wj′′ → uα in L1,w and a.e. so that wj′′ → uα, from which the assertion
follows.

Theorem 3.2. Let ̺ > 0 be given and choose α(̺) ∈ R such that M(uα(̺)) = ̺.
Then, for each ε > 0 there exists δ > 0 such that for any u0 ∈ X+

̺ with

|u0 − uα(̺)|1 < δ and V (u0) < V (uα(̺)) + δ

it holds |u(t;u0) − uα(̺)|1 < ε for t ≥ 0.

Proof. Due to [3, Prop.4.3] we merely have to show that V is decreasing along
orbits — which was done in Proposition 2.7 — and that uα(̺) lies in a ’potential
well’ with respect to X+

̺ , that is, for given small ε > 0 there exists σ(ε) > 0 such
that V (w)−V (uα(̺)) ≥ σ(ε) for all w ∈ X+

̺ with |w−uα(̺)|1 = ε. But this readily
follows from Proposition 3.1.

Define the metric d by

d(w, v) := |w − v|1 + |V (w) − V (v)| , w, v ∈ X+ .

We conclude with a stability result being a stright consequence of the decrease of
V along orbits.

Corollary 3.3. Let ̺ > 0 be arbitrary and choose α(̺) ∈ R such that M(uα(̺)) = ̺.
Then, the equilibrium uα(̺) is stable in (X+

̺ , d), that is, for each ε > 0 there exists

δ > 0 such that for any u0 ∈ X+
̺ with d(u0, uα(̺)) < δ it holds d

(

u(t;u0), uα(̺)

)

< ε
for t ≥ 0.

Remark 3.4. For the case without scattering and shattering it is shown in the
recent paper [17] that

V
(

u(t;u0)
)

→ V (uα) as t → ∞ ,

where M(uα) = M(u0). Such an improvement of Theorem 2.8 would allow to con-
clude asymptotical stability of the equilibrium uα(̺) in (X+

̺ , d).
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