• Zielgruppen
  • Suche
 

Publikationen

P. Morgenstern. Mesh Refinement Strategies for the Adaptive Isogeometric Method. PhD thesis, Rheinische Friedrich-Wilhelms-Universität Bonn, 2017.
bib | URN | pdf ]
P. Hennig, M. Kästner, P. Morgenstern, and D. Peterseim. Adaptive Mesh Refinement Strategies in Isogeometric Analysis - A Computational Comparison. Comp. Meth. Appl. Mech. Eng., 316:424–-448, 2017.
bib | DOI | arXiv | pdf ]
A. Buffa, C. Giannelli, P. Morgenstern, and D. Peterseim. Complexity of hierarchical refinement for a class of admissible mesh configurations. Computer Aided Geometric Design, 47:83-92, 2016.
bib | DOI | arXiv | pdf ]
P. Morgenstern. Globally structured three-dimensional analysis-suitable T-splines: Definition, linear independence and $m$-graded local refinement. SIAM J. Numer. Anal., 54(4):2163-2186, May 2016.
bib | DOI | arXiv | pdf ]
P. Morgenstern and D. Peterseim. Analysis-suitable adaptive T-mesh refinement with linear complexity. Computer Aided Geometric Design, 34:50-66, 2015.
bib | DOI | arXiv | pdf ]
P. Henning, P. Morgenstern, and D. Peterseim. Multiscale partition of unity. In M. Griebel and M. A. Schweitzer, editors, Meshfree Methods for Partial Differential Equations VII, volume 100 of Lecture Notes in Computational Science and Engineering, pages 185-204. Springer International Publishing, 2015.
bib | DOI | arXiv | pdf ]